Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics and Genomics

The application of single-cell sequencing in pancreatic neoplasm: analysis, diagnosis and treatment

Abstract

Pancreatic neoplasms, including pancreatic ductal adenocarcinoma (PDAC), intraductal papillary mucinous neoplasm (IPMN) and pancreatic cystic neoplasms (PCNs), are the most puzzling diseases. Numerous studies have not brought significant improvements in prognosis and diagnosis, especially in PDAC. One important reason is that previous studies only focused on differences between patients and healthy individuals but ignored intratumoral heterogeneity. In recent years, single-cell sequencing techniques, represented by single-cell RNA sequencing (scRNA-seq), have emerged by which researchers can analyse each cell in tumours instead of their average levels. Herein, we summarise the new current knowledge of single-cell sequencing in pancreatic neoplasms with respect to techniques, tumour heterogeneities and treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Application of single-cell sequencing in PDAC studies.
Fig. 2: The basic workflow of single-cell sequencing.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. https://doi.org/10.3322/caac.21551. e-pub ahead of print 2019/01/09.

    Article  Google Scholar 

  2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21. https://doi.org/10.1158/0008-5472.CAN-14-0155.

    Article  CAS  Google Scholar 

  3. Grossberg AJ, Chu LC, Deig CR, Fishman EK, Hwang WL, Maitra A, et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J Clin. 2020;70:375–403. https://doi.org/10.3322/caac.21626. e-pub ahead of print 2020/07/20.

    Article  Google Scholar 

  4. Milan M, Diaferia GR, Natoli G. Tumor cell heterogeneity and its transcriptional bases in pancreatic cancer: a tale of two cell types and their many variants. EMBO J. 2021;40:e107206 https://doi.org/10.15252/embj.2020107206.

    Article  CAS  Google Scholar 

  5. Belle JI, DeNardo DG. A single-cell window into pancreas cancer fibroblast heterogeneity. Cancer Discov. 2019;9:1001–2. https://doi.org/10.1158/2159-8290.CD-19-0576.

    Article  CAS  Google Scholar 

  6. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395:2008–20. https://doi.org/10.1016/s0140-6736(20)30974-0. e-pub ahead of print 2020/07/01.

    Article  CAS  Google Scholar 

  7. Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol. 2020;17:457–73. https://doi.org/10.1038/s41569-020-0359-y.

    Article  CAS  Google Scholar 

  8. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11:163–6. https://doi.org/10.1038/nmeth.2772.

    Article  CAS  Google Scholar 

  9. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013;14:618–30. https://doi.org/10.1038/nrg3542.

    Article  CAS  Google Scholar 

  10. Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14:479–92. https://doi.org/10.1038/s41581-018-0021-7.

    Article  CAS  Google Scholar 

  11. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377–82. https://doi.org/10.1038/nmeth.1315.

    Article  CAS  Google Scholar 

  12. Korin B, Chung J-J, Avraham S, Shaw AS. Preparation of single-cell suspensions of mouse glomeruli for high-throughput analysis. Nat Protoc. 2021;16:4068–83. https://doi.org/10.1038/s41596-021-00578-2.

    Article  CAS  Google Scholar 

  13. Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14:671–83. https://doi.org/10.1093/bib/bbs046.

    Article  CAS  Google Scholar 

  14. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096–8. https://doi.org/10.1038/nmeth.2639.

    Article  CAS  Google Scholar 

  15. Picelli S, Björklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 2014;24:2033–40. https://doi.org/10.1101/gr.177881.114.

    Article  CAS  Google Scholar 

  16. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14. https://doi.org/10.1016/j.cell.2015.05.002.

    Article  CAS  Google Scholar 

  17. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science (N. Y, NY). 2014;343:776–9. https://doi.org/10.1126/science.1247651.

    Article  CAS  Google Scholar 

  18. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17:77 https://doi.org/10.1186/s13059-016-0938-8.

    Article  Google Scholar 

  19. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017; 65. https://doi.org/10.1016/j.molcel.2017.01.023.

  20. Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Research. 2016;5:2122.

    Google Scholar 

  21. Chan TE, Stumpf MPH, Babtie AC. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 2017; 5. https://doi.org/10.1016/j.cels.2017.08.014.

  22. Büttner M, Miao Z, Wolf FA, Teichmann SA, Theis FJ. A test metric for assessing single-cell RNA-seq batch correction. Nat Methods. 2019;16:43–9. https://doi.org/10.1038/s41592-018-0254-1.

    Article  Google Scholar 

  23. van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recovering gene interactions from single-cell data using data diffusion. Cell. 2018; 174; https://doi.org/10.1016/j.cell.2018.05.061.

  24. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018;15:1053–8. https://doi.org/10.1038/s41592-018-0229-2.

    Article  CAS  Google Scholar 

  25. Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods. 2018;15:539–42. https://doi.org/10.1038/s41592-018-0033-z.

    Article  CAS  Google Scholar 

  26. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods. 2019;16:1289–96. https://doi.org/10.1038/s41592-019-0619-0.

    Article  CAS  Google Scholar 

  27. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive Integration of single-cell data. Cell. 2019; 177, https://doi.org/10.1016/j.cell.2019.05.031.

  28. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020;21:12 https://doi.org/10.1186/s13059-019-1850-9.

    Article  CAS  Google Scholar 

  29. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187–201. https://doi.org/10.1016/j.cell.2015.04.044.

    Article  CAS  Google Scholar 

  30. Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008;9:2579–2605.

  31. McInnes L, Healy J, Melville J. Umap: uniform manifold approximation and projection for dimension reduction. 2018. https://doi.org/10.48550/arXiv.1802.03426.

  32. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech: theory Exp. 2008;2008:P10008.

    Article  Google Scholar 

  33. Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat Methods. 2017;14:414–6. https://doi.org/10.1038/nmeth.4207.

    Article  CAS  Google Scholar 

  34. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6. https://doi.org/10.1038/nbt.2859.

    Article  CAS  Google Scholar 

  35. Yao Z, Mich JK, Ku S, Menon V, Krostag A-R, Martinez RA, et al. A single-cell roadmap of lineage bifurcation in human esc models of embryonic brain development. Cell Stem Cell. 2017;20:120–34. https://doi.org/10.1016/j.stem.2016.09.011.

    Article  CAS  Google Scholar 

  36. Xie P, Gao M, Wang C, Zhang J, Noel P, Yang C, et al. SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles. Nucleic Acids Res. 2019;47:e48 https://doi.org/10.1093/nar/gkz116. e-pub ahead of print 2019/02/26.

    Article  CAS  Google Scholar 

  37. Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data sets. Nat Methods. 2018;15:359–62. https://doi.org/10.1038/nmeth.4644.

    Article  CAS  Google Scholar 

  38. Zanini F, Berghuis BA, Jones RC, Nicolis di Robilant B, Nong RY, Norton JA, et al. Northstar enables automatic classification of known and novel cell types from tumor samples. Sci Rep. 2020;10:15251. https://doi.org/10.1038/s41598-020-71805-1.

    Article  CAS  Google Scholar 

  39. Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell. 2018; 33, https://doi.org/10.1016/j.ccell.2018.03.007.

  40. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science (N. Y, NY). 2014;344:1396–401. https://doi.org/10.1126/science.1254257.

    Article  CAS  Google Scholar 

  41. Fan J, Lee H-O, Lee S, Ryu D-E, Lee S, Xue C, et al. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data. Genome Res. 2018;28:1217–27. https://doi.org/10.1101/gr.228080.117.

    Article  CAS  Google Scholar 

  42. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat Biotechnol. 2021;39:599–608. https://doi.org/10.1038/s41587-020-00795-2.

    Article  CAS  Google Scholar 

  43. Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. 2019;20:273–82. https://doi.org/10.1038/s41576-018-0088-9. e-pub ahead of print 2019/01/09.

    Article  CAS  Google Scholar 

  44. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SGH, Hoadley KA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47:1168–78. https://doi.org/10.1038/ng.3398.

    Article  CAS  Google Scholar 

  45. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20:1218–49.

    Article  CAS  Google Scholar 

  46. Peng J, Sun B-F, Chen C-Y, Zhou J-Y, Chen Y-S, Chen H, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29:725–38. https://doi.org/10.1038/s41422-019-0195-y.

    Article  CAS  Google Scholar 

  47. Juiz N, Elkaoutari A, Bigonnet M, Gayet O, Roques J, Nicolle R, et al. Basal-like and classical cells coexist in pancreatic cancer revealed by single-cell analysis on biopsy-derived pancreatic cancer organoids from the classical subtype. FASEB J. 2020;34:12214–28. https://doi.org/10.1096/fj.202000363RR.

    Article  CAS  Google Scholar 

  48. Tiriac H, Plenker D, Baker LA, Tuveson DA Organoid models for translational pancreatic cancer research. Curr Opin Genet Dev. 2019; 54, https://doi.org/10.1016/j.gde.2019.02.003.

  49. Hosein AN, Huang H, Wang Z, Parmar K, Du W, Huang J, et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight. 2019; 5, https://doi.org/10.1172/jci.insight.129212.

  50. Wang M, Estrella JS, Katz MH, Kim M, Rashid A, Lee JE, et al. Expression of epithelial-mesenchymal transition markers in treated pancreatic ductal adenocarcinoma. Pancreas. 2019;48:1367–72. https://doi.org/10.1097/MPA.0000000000001432.

    Article  CAS  Google Scholar 

  51. Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis organotropism: redefining the congenial soil. Dev Cell. 2019;49:375–91. https://doi.org/10.1016/j.devcel.2019.04.012.

    Article  CAS  Google Scholar 

  52. Chen Y-I, Chang C-C, Hsu M-F, Jeng Y-M, Tien Y-W, Chang M-C, et al. Homophilic ATP1A1 binding induces activin A secretion to promote EMT of tumor cells and myofibroblast activation. Nat Commun. 2022;13:2945. https://doi.org/10.1038/s41467-022-30638-4.

    Article  CAS  Google Scholar 

  53. Lin W, Noel P, Borazanci EH, Lee J, Amini A, Han IW, et al. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 2020;12:80 https://doi.org/10.1186/s13073-020-00776-9.

    Article  CAS  Google Scholar 

  54. Xu Q, Chen S, Hu Y, Huang W. Single-cell RNA transcriptome reveals the intra-tumoral heterogeneity and regulators underlying tumor progression in metastatic pancreatic ductal adenocarcinoma. Cell Death Discov. 2021;7:331. https://doi.org/10.1038/s41420-021-00663-1. e-pub ahead of print 2021/11/05.

    Article  CAS  Google Scholar 

  55. McDonald OG, Maitra A, Hruban RH. Human correlates of provocative questions in pancreatic pathology. Adv Anat Pathol. 2012;19:351–62. https://doi.org/10.1097/PAP.0b013e318273f998.

    Article  Google Scholar 

  56. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30. https://doi.org/10.1038/nature16064.

    Article  CAS  Google Scholar 

  57. Carstens JL, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews KM, et al. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep. 2021;35:108990. https://doi.org/10.1016/j.celrep.2021.108990.

    Article  CAS  Google Scholar 

  58. Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res: MCR. 2011;9:1608–20. https://doi.org/10.1158/1541-7786.MCR-10-0568.

    Article  CAS  Google Scholar 

  59. Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell. 2019;49:361–74. https://doi.org/10.1016/j.devcel.2019.04.010.

    Article  CAS  Google Scholar 

  60. Pan H, Diao H, Zhong W, Wang T, Wen P, Wu C. A cancer cell cluster marked by LincRNA MEG3 leads pancreatic ductal adenocarcinoma metastasis. Front Oncol. 2021;11:656564. https://doi.org/10.3389/fonc.2021.656564. e-pub ahead of print 2021/06/01.

    Article  Google Scholar 

  61. Yang Y. Current status and future prospect of surgical treatment for pancreatic cancer. Hepatobiliary Surg Nutr. 2020;9:89–91. https://doi.org/10.21037/hbsn.2019.12.04.

    Article  Google Scholar 

  62. Chen K, Wang Q, Li M, Guo H, Liu W, Wang F, et al. Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine. 2021;66:103315 https://doi.org/10.1016/j.ebiom.2021.103315.

    Article  CAS  Google Scholar 

  63. Hosein AN, Dangol G, Okumura T, Roszik J, Rajapakshe K, Siemann M, et al. Loss of Rnf43 accelerates Kras-mediated neoplasia and remodels the tumor immune microenvironment in pancreatic adenocarcinoma. Gastroenterology. 2022;162:1303–18. https://doi.org/10.1053/j.gastro.2021.12.273. e1318e-pub ahead of print 2022/01/02.

    Article  CAS  Google Scholar 

  64. Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263. https://doi.org/10.3389/fimmu.2015.00263.

    Article  Google Scholar 

  65. Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 2016;29:832–45. https://doi.org/10.1016/j.ccell.2016.04.014.

    Article  CAS  Google Scholar 

  66. Li A, King J, Moro A, Sugi MD, Dawson DW, Kaplan J, et al. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer. Am J Pathol. 2011;178:1340–9. https://doi.org/10.1016/j.ajpath.2010.11.058.

    Article  CAS  Google Scholar 

  67. Chen Z, Hambardzumyan D. Macrophage-tumor cell intertwine drives the transition into a mesenchymal-like cellular state of glioblastoma. Cancer Cell. 2021;39:743–5. https://doi.org/10.1016/j.ccell.2021.05.003. e-pub ahead of print 2021/06/05.

    Article  CAS  Google Scholar 

  68. Lee JJ, Bernard V, Semaan A, Monberg ME, Huang J, Stephens BM, et al. Elucidation of tumor-stromal heterogeneity and the ligand-receptor interactome by single-cell transcriptomics in real-world pancreatic cancer biopsies. Clin Cancer Res. 2021;27:5912–21. https://doi.org/10.1158/1078-0432.CCR-20-3925. e-pub ahead of print 2021/08/25.

    Article  CAS  Google Scholar 

  69. Garrido-Laguna I, Hidalgo M. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol. 2015;12:319–34. https://doi.org/10.1038/nrclinonc.2015.53.

    Article  CAS  Google Scholar 

  70. Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J, et al. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol. 2012;9:454–67. https://doi.org/10.1038/nrgastro.2012.115.

    Article  CAS  Google Scholar 

  71. Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 2013;110:20212–7. https://doi.org/10.1073/pnas.1320318110.

    Article  CAS  Google Scholar 

  72. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–34. https://doi.org/10.1016/j.ccr.2014.04.005.

    Article  Google Scholar 

  73. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9:1102–23. https://doi.org/10.1158/2159-8290.Cd-19-0094. e-pub ahead of print 2019/06/15.

    Article  CAS  Google Scholar 

  74. Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40:656–73. https://doi.org/10.1016/j.ccell.2022.04.011. e657e-pub ahead of print 2022/05/07.

    Article  CAS  Google Scholar 

  75. McAndrews KM, Chen Y, Darpolor JK, Zheng X, Yang S, Carstens JL, et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct il6-mediated therapy resistance in pancreatic cancer. Cancer Discov. 2022;12:1580–97. https://doi.org/10.1158/2159-8290.CD-20-1484.

    Article  CAS  Google Scholar 

  76. Wang LM, Silva MA, D’Costa Z, Bockelmann R, Soonawalla Z, Liu S, et al. The prognostic role of desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:4183–94. https://doi.org/10.18632/oncotarget.6770.

    Article  Google Scholar 

  77. Laklai H, Miroshnikova YA, Pickup MW, Collisson EA, Kim GE, Barrett AS, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497–505. https://doi.org/10.1038/nm.4082.

    Article  CAS  Google Scholar 

  78. Wang Y, Liang Y, Xu H, Zhang X, Mao T, Cui J, et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov. 2021;7:36. https://doi.org/10.1038/s41421-021-00271-4. e-pub ahead of print 2021/05/27.

    Article  CAS  Google Scholar 

  79. Dominguez CX, Müller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15 myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 2020;10:232–53. https://doi.org/10.1158/2159-8290.CD-19-0644.

    Article  CAS  Google Scholar 

  80. Calon A, Espinet E, Palomo-Ponce S, Tauriello DVF, Iglesias M, Céspedes MV, et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22:571–84. https://doi.org/10.1016/j.ccr.2012.08.013.

    Article  CAS  Google Scholar 

  81. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8. https://doi.org/10.1038/nature25501.

    Article  CAS  Google Scholar 

  82. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78–82. https://doi.org/10.1126/science.aaf2403.

    Article  Google Scholar 

  83. Saiselet M, Rodrigues-Vitória J, Tourneur A, Craciun L, Spinette A, Larsimont D, et al. Transcriptional output, cell-type densities, and normalization in spatial transcriptomics. J Mol Cell Biol. 2020;12:906–8. https://doi.org/10.1093/jmcb/mjaa028.

    Article  Google Scholar 

  84. Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol. 2020;38:333–42. https://doi.org/10.1038/s41587-019-0392-8.

    Article  CAS  Google Scholar 

  85. Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 2021;49:e50 https://doi.org/10.1093/nar/gkab043.

    Article  CAS  Google Scholar 

  86. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8:329–40. https://doi.org/10.1038/nrc2375.

    Article  CAS  Google Scholar 

  87. Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 2014;8:1905–18. https://doi.org/10.1016/j.celrep.2014.08.029.

    Article  CAS  Google Scholar 

  88. Lapin M, Tjensvoll K, Oltedal S, Javle M, Smaaland R, Gilje B, et al. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells. BMC Cancer. 2017;17:390 https://doi.org/10.1186/s12885-017-3385-3.

    Article  Google Scholar 

  89. Lapin M, Tjensvoll K, Oltedal S, Buhl T, Gilje B, Smaaland R, et al. MINDEC-an enhanced negative depletion strategy for circulating tumour cell enrichment. Sci Rep. 2016;6:28929. https://doi.org/10.1038/srep28929.

    Article  CAS  Google Scholar 

  90. Zhu L, Kan K-J, Grün JL, Hissa B, Yang C, Győrffy B, et al. GAS2L1 is a potential biomarker of circulating tumor cells in pancreatic cancer. Cancers. 2020; 12; https://doi.org/10.3390/cancers12123774.

  91. Dimitrov-Markov S, Perales-Patón J, Bockorny B, Dopazo A, Muñoz M, Baños N, et al. Discovery of new targets to control metastasis in pancreatic cancer by single-cell transcriptomics analysis of circulating tumor cells. Mol Cancer Ther. 2020;19:1751–60. https://doi.org/10.1158/1535-7163.MCT-19-1166.

    Article  CAS  Google Scholar 

  92. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021; 71; https://doi.org/10.3322/caac.21654.

  93. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–7. https://doi.org/10.1038/nature09515.

    Article  CAS  Google Scholar 

  94. Basturk O, Hong S-M, Wood LD, Adsay NV, Albores-Saavedra J, Biankin AV, et al. A revised classification system and recommendations from the baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surgical Pathol. 2015;39:1730–41. https://doi.org/10.1097/PAS.0000000000000533.

    Article  Google Scholar 

  95. Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, et al. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res. 2019;25:2194–205. https://doi.org/10.1158/1078-0432.Ccr-18-1955. e-pub ahead of print 2018/11/06.

    Article  CAS  Google Scholar 

  96. Kuboki Y, Fischer CG, Beleva Guthrie V, Huang W, Yu J, Chianchiano P, et al. Single-cell sequencing defines genetic heterogeneity in pancreatic cancer precursor lesions. J Pathol. 2019;247:347–56. https://doi.org/10.1002/path.5194.

    Article  CAS  Google Scholar 

  97. Kopp JL, von Figura G, Mayes E, Liu F-F, Dubois CL, Morris JP, et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22:737–50. https://doi.org/10.1016/j.ccr.2012.10.025.

    Article  CAS  Google Scholar 

  98. Schlesinger Y, Yosefov-Levi O, Kolodkin-Gal D, Granit RZ, Peters L, Kalifa R, et al. Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nat Commun. 2020;11:4516. https://doi.org/10.1038/s41467-020-18207-z.

    Article  CAS  Google Scholar 

  99. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65. https://doi.org/10.1056/NEJMoa1200694.

    Article  CAS  Google Scholar 

  100. Lu C, Paschall AV, Shi H, Savage N, Waller JL, Sabbatini ME, et al. The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J Natl Cancer Inst. 2017; 109, https://doi.org/10.1093/jnci/djw283.

  101. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175:313–26. https://doi.org/10.1016/j.cell.2018.09.035.

    Article  CAS  Google Scholar 

  102. Blando J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS, et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc Natl Acad Sci USA. 2019;116:1692–7. https://doi.org/10.1073/pnas.1811067116.

    Article  CAS  Google Scholar 

  103. Pan Y, Lu F, Fei Q, Yu X, Xiong P, Yu X, et al. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer. J Hematol Oncol. 2019;12:124 https://doi.org/10.1186/s13045-019-0822-6.

    Article  CAS  Google Scholar 

  104. Heilmann AM, Perera RM, Ecker V, Nicolay BN, Bardeesy N, Benes CH, et al. CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Res. 2014;74:3947–58. https://doi.org/10.1158/0008-5472.CAN-13-2923.

    Article  CAS  Google Scholar 

  105. Franco J, Witkiewicz AK, Knudsen ES. CDK4/6 inhibitors have potent activity in combination with pathway selective therapeutic agents in models of pancreatic cancer. Oncotarget. 2014;5:6512–25.

    Article  Google Scholar 

  106. Knudsen ES, Witkiewicz AK. The strange case of CDK4/6 inhibitors: mechanisms, resistance, and combination strategies. Trends Cancer. 2017;3:39–55. https://doi.org/10.1016/j.trecan.2016.11.006.

    Article  CAS  Google Scholar 

  107. Knudsen ES, Kumarasamy V, Chung S, Ruiz A, Vail P, Tzetzo S, et al. Targeting dual signalling pathways in concert with immune checkpoints for the treatment of pancreatic cancer. Gut. 2021;70:127–38. https://doi.org/10.1136/gutjnl-2020-321000.

    Article  CAS  Google Scholar 

  108. Panagi M, Voutouri C, Mpekris F, Papageorgis P, Martin MR, Martin JD, et al. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics. 2020;10:1910–22. https://doi.org/10.7150/thno.36936.

    Article  CAS  Google Scholar 

  109. Minami Y, Nishida N, Kudo M. Radiofrequency ablation of liver metastasis: potential impact on immune checkpoint inhibitor therapy. Eur Radio. 2019;29:5045–51. https://doi.org/10.1007/s00330-019-06189-6.

    Article  Google Scholar 

  110. Fei Q, Pan Y, Lin W, Zhou Y, Yu X, Hou Z, et al. High-dimensional single-cell analysis delineates radiofrequency ablation induced immune microenvironmental remodeling in pancreatic cancer. Cell Death Dis. 2020;11:589 https://doi.org/10.1038/s41419-020-02787-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Le Li for assistance with his comments and proof reading that greatly improved the manuscript. This paper was supported by grants from the National Natural Scientific Foundation of China (81770639,82070657), Applied technology research and development project of Heilongjiang Province (GA20C019), Outstanding youth funds of the first affiliated hospital of Harbin Medical University (HYD2020JQ0006), and Research projects of Chinese Research Hospital Association (Y2019FH-DTCC-SB1).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in acquired data, interpreted the results, reviewed literature, drafted and revised the manuscript and agrees to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Gang Wang or Qiushi Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, G., Zhang, L., Gao, L. et al. The application of single-cell sequencing in pancreatic neoplasm: analysis, diagnosis and treatment. Br J Cancer 128, 206–218 (2023). https://doi.org/10.1038/s41416-022-02023-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-02023-x

This article is cited by

Search

Quick links