Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer entity characterized by a heterogeneous genetic landscape and an immunosuppressive tumor microenvironment. Recent advances in high-resolution single-cell sequencing and spatial transcriptomics technologies have enabled an in-depth characterization of both malignant and host cell types and increased our understanding of the heterogeneity and plasticity of PDAC in the steady state and under therapeutic perturbation. In this Review we outline single-cell analyses in PDAC, discuss their implications on our understanding of the disease and present future perspectives of multimodal approaches to elucidate its biology and response to therapy at the single-cell level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell profiling to uncover pancreatic cancer heterogeneity and complexity.
Fig. 2: scRNA-seq approaches to decode cell–cell interaction and communication, as well as the spatial architecture of PDAC subtypes.
Fig. 3: Multimodal spatial single-cell profiling technologies.
Fig. 4: Timeline of subtyping classification advances in pancreatic cancer.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  2. Rahib, L., Wehner, M. R., Matrisian, L. M. & Nead, K. T. Estimated projection of US cancer incidence and death to 2040. JAMA Netw. Open 4, e214708 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Witkiewicz, A. K. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Connor, A. A. & Gallinger, S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat. Rev. Cancer 22, 131–142 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Aung, K. L. et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the COMPASS trial. Clin. Cancer Res. 24, 1344–1354 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 52, 231–240 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Falcomatà, C. et al. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer. Cancer Discov. 13, 278–297 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carstens, J. L. et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat. Commun. 8, 15095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liudahl, S. M. et al. Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: phenotypic and spatial features associated with clinical outcome. Cancer Discov. 11, 2014–2031 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mahajan, U. M. et al. Immune cell and stromal signature associated with progression-free survival of patients with resected pancreatic ductal adenocarcinoma. Gastroenterology 155, 1625–1639.e2 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Bear, A. S., Vonderheide, R. H. & O’Hara, M. H. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell 38, 788–802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hosein, A. N., Brekken, R. A. & Maitra, A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 17, 487–505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Neesse, A., Algül, H., Tuveson, D. A. & Gress, T. M. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64, 1476–1484 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mueller, S. et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 554, 62–68 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyabayashi, K. et al. Intraductal transplantation models of human pancreatic ductal adenocarcinoma reveal progressive transition of molecular subtypes. Cancer Discov. 10, 1566–1589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Collisson, E. A., Bailey, P., Chang, D. K. & Biankin, A. V. Molecular subtypes of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 207–220 (2019).

    Article  PubMed  Google Scholar 

  21. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dijk, F. et al. Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems. Sci. Rep. 10, 337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalimuthu, N. et al. Morphological classification of pancreatic ductal adenocarcinoma that predicts molecular subtypes and correlates with clinical outcome. Gut 69, 317–328 (2020).

    Article  Google Scholar 

  24. Le Large, T. Y. et al. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight 5, e138290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Milan, M., Diaferia, G. R. & Natoli, G. Tumor cell heterogeneity and its transcriptional bases in pancreatic cancer: a tale of two cell types and their many variants. EMBO J. 40, e107206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat. Cancer 1, 59–74 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steins, A. et al. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep. 21, e48780 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Puleo, F. et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology 155, 1999–2013.e3 (2018).

    Article  PubMed  Google Scholar 

  31. Giladi, A. & Amit, I. Single-cell genomics: a stepping stone for future immunology discoveries. Cell 172, 14–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Sun, G. et al. Single-cell RNA sequencing in cancer: applications, advances, and emerging challenges. Mol. Ther. Oncolytics 21, 183–206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yofe, I., Dahan, R. & Amit, I. Single-cell genomic approaches for developing the next generation of immunotherapies. Nat. Med. 26, 171–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Casado-Pelaez, M., Bueno-Costa, A. & Esteller, M. Single cell cancer epigenetics. Trends Cancer 8, 820–838 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Jia, Q., Chu, H., Jin, Z., Long, H. & Zhu, B. High-throughput single-сell sequencing in cancer research. Signal Transduct. Target. Ther. 7, 145 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Method of the Year 2019: single-cell multimodal omics. Nat. Methods 17, 1 (2020).

  37. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, E. A. & Hodges, H. C. The spatial and genomic hierarchy of tumor ecosystems revealed by single-cell technologies. Trends Cancer 5, 411–425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hwang, W. L. et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat. Genet. 54, 1178–1191 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Colomé-Tatché, M. & Theis, F. J. Statistical single cell multi-omics integration. Curr. Opin. Syst. Biol. 7, 54–59 (2018).

    Article  Google Scholar 

  43. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kharchenko, P. V. The triumphs and limitations of computational methods for scRNA-seq. Nat. Methods 18, 723–732 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Argelaguet, R., Cuomo, A. S. E., Stegle, O. & Marioni, J. C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 39, 1202–1215 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Cao, Z. J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458–1466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hao, Y. et al. Dictionary learning for integrative, multimodal, and scalable single-cell analysis. Preprint at bioRxiv https://doi.org/10.1101/2022.02.24.481684 (2022).

  51. Lotfollahi, M., Litinetskaya, A. & Theis, F. J. Multigrate: single-cell multi-omic data integration. Preprint at bioRxiv https://doi.org/10.1101/2022.03.16.484643 (2022).

  52. Han, J., DePinho, R. A. & Maitra, A. Single-cell RNA sequencing in pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 18, 451–452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Raghavan, S. et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 184, 6119–6137.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ting, D. T. et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krieger, T. G. et al. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. Nat. Commun. 12, 5826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chijimatsu, R. et al. Establishment of a reference single-cell RNA sequencing dataset for human pancreatic adenocarcinoma. iScience 25, 104659 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cui Zhou, D. et al. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat. Genet. 54, 1390–1405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bernard, V. et al. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin. Cancer Res. 25, 2194–2205 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Schlesinger, Y. et al. Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nat. Commun. 11, 4516 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alonso-Curbelo, D. et al. A gene–environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Storz, P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 14, 296–304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tu, M. et al. TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. Nat. Cancer 2, 1185–1203 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Falcomatà, C. et al. Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment. Nat. Cancer 3, 318–336 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hosein, A. N. et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 5, e129212 (2019).

    Article  PubMed  Google Scholar 

  65. Ischenko, I. et al. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat. Commun. 12, 1482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Steele, N. G. et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat. Cancer 1, 1097–1112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hwang, R. F. et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 68, 918–926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Özdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Biffi, G. et al. IL1-Induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  75. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hallett, R. et al. Therapeutic targeting of LIF overcomes macrophage mediated immunosuppression of the local tumor microenvironment. Clin. Cancer Res. 29, 791–804 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. McAndrews, K. M. et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discov. 12, 1580–1597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lo, A. et al. Fibroblast activation protein augments progression and metastasis of pancreatic ductal adenocarcinoma. JCI Insight 2, e92232 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3–CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Weber, R. et al. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell. Immunol. 359, 104254 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Huang, H. et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656–673.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Hutton, C. et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 39, 1227–1244.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Grünwald, B. T. et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 184, 5577–5592.e18 (2021).

    Article  PubMed  Google Scholar 

  86. Falcomatà, C. & Saur, D. Self-renewal equality in pancreas homeostasis, regeneration, and cancer. Cell Rep. 37, 110135 (2021).

    Article  PubMed  Google Scholar 

  87. Lee, J. J. et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl Acad. Sci. USA 111, E3091–E3100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lodestijn, S. C. et al. Marker-free lineage tracing reveals an environment-instructed clonogenic hierarchy in pancreatic cancer. Cell Rep. 37, 109852 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Scales, M. K. et al. Combinatorial Gli activity directs immune infiltration and tumor growth in pancreatic cancer. PLoS Genet. 18, e1010315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Catenacci, D. V. et al. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a Hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J. Clin. Oncol. 33, 4284–4292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ko, A. H. et al. A phase I study of FOLFIRINOX plus IPI-926, a Hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas 45, 370–375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Steele, N. G. et al. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27, 2023–2037 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ligorio, M. et al. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell 178, 160–175.e27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ruscetti, M. et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell 184, 4838–4839 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Renouf, D. J. et al. The CCTG PA.7 phase II trial of gemcitabine and nab-paclitaxel with or without durvalumab and tremelimumab as initial therapy in metastatic pancreatic ductal adenocarcinoma. Nat. Commun. 13, 5020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Terrero, G. et al. Ipilimumab/nivolumab therapy in patients with metastatic pancreatic or biliary cancer with homologous recombination deficiency pathogenic germline variants. JAMA Oncol. 8, 1–3 (2022).

    Article  PubMed  Google Scholar 

  99. Luchini, C. et al. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. Gut 70, 148–156 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Reiss, K. A. et al. Niraparib plus nivolumab or niraparib plus ipilimumab in patients with platinum-sensitive advanced pancreatic cancer: a randomised, phase 1b/2 trial. Lancet Oncol. 23, 1009–1020 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, J. J. et al. Elucidation of tumor–stromal heterogeneity and the ligand–receptor interactome by single-cell transcriptomics in real-world pancreatic cancer biopsies. Clin. Cancer Res. 27, 5912–5921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schalck, A. et al. Single-cell sequencing reveals trajectory of tumor-infiltrating lymphocyte states in pancreatic cancer. Cancer Discov. 12, 2330–2349 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Freed-Pastor, W. A. et al. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer. Cancer Cell 39, 1342–1360.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kadiyala, P., Elhossiny, A. M. & Carpenter, E. S. Using single cell transcriptomics to elucidate the myeloid compartment in pancreatic cancer. Front. Oncol. 12, 881871 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Bohlson, S. S., O’Conner, S. D., Hulsebus, H. J., Ho, M. M. & Fraser, D. A. Complement, C1q, and C1q-related molecules regulate macrophage polarization. Front. Immunol. 5, 402 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kemp, S. B. et al. Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages. Life Sci. Alliance 4, e202000935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Katzenelenbogen, Y. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Kemp, S. B. et al. Apolipoprotein E promotes immune suppression in pancreatic cancer through NF-κB-mediated production of CXCL1. Cancer Res. 81, 4305–4318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Juiz, N. et al. Basal-like and classical cells coexist in pancreatic cancer revealed by single-cell analysis on biopsy-derived pancreatic cancer organoids from the classical subtype. FASEB J. 34, 12214–12228 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Lin, W. et al. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 12, 80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tosti, L. et al. Single-nucleus and in situ RNA-sequencing reveal cell topographies in the human pancreas. Gastroenterology 160, 1330–1344.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01467-z (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Marx, V. Method of the Year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Cancer Consortium, Deutsche Forschungsgemeinschaft (DFG SA 1374/8-1 (project ID 515991405), DFG SA 1374/7-1 (project ID 515571394), DGF SCHO 1732/2-1 (project ID 360394750), DFG SA 1374/6-1 (project ID 458890590) and DFG SA 1374/4-3 (project ID 219542602) to D.S. and SFB 1321 (project IDs 329628492 P06, P11 and S01) to R.R. and D.S.), the Wilhelm Sander-Stiftung (2020.174.1 and 2017.091.2 to D.S.) and the European Research Council (ERC CoG No. 648521 to D.S.). C.F. is a Cancer Research Institute Irvington Fellow supported by the Cancer Research Institute (CRI4641).

Author information

Authors and Affiliations

Authors

Contributions

S.B., C.F., R.R., F.J.T. and D.S. wrote the paper.

Corresponding author

Correspondence to Dieter Saur.

Ethics declarations

Competing interests

F.J.T. consults for Immunai Inc., Singularity Bio B.V., CytoReason Ltd, Cellarity and Omniscope Ltd, and has an ownership interest in Dermagnostix GmbH and Cellarity. The other authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Arnav Mehta, Nina Steele and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bärthel, S., Falcomatà, C., Rad, R. et al. Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. Nat Cancer 4, 454–467 (2023). https://doi.org/10.1038/s43018-023-00526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-023-00526-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer