Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular and Molecular Biology

Cellular senescence in neuroblastoma

Abstract

Neuroblastoma is a tumour that arises from the sympathoadrenal lineage occurring predominantly in children younger than five years. About half of the patients are diagnosed with high-risk tumours and undergo intensive multi-modal therapy. The success rate of current treatments for high-risk neuroblastoma is disappointingly low and survivors suffer from multiple therapy-related long-term side effects. Most chemotherapeutics drive cancer cells towards cell death or senescence. Senescence has long been considered to represent a terminal non-proliferative state and therefore an effective barrier against tumorigenesis. This dogma, however, has been challenged by recent observations that infer a much more dynamic and reversible nature for this process, which may have implications for the efficacy of therapy-induced senescence-oriented treatment strategies. Neuroblastoma cells in a dormant, senescent-like state may escape therapy, whilst their senescence-associated secretome may promote inflammation and invasiveness, potentially fostering relapse. Conversely, due to its distinct molecular identity, senescence may also represent an opportunity for the development of novel (combination) therapies. However, the limited knowledge on the molecular dynamics and diversity of senescence signatures demands appropriate models to study this process in detail. This review summarises the molecular knowledge about cellular senescence in neuroblastoma and investigates current and future options towards therapeutic exploration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of cellular senescence inducers and its dynamic impact on tumour growth.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  CAS  PubMed  Google Scholar 

  2. Olovnikov AM. [Principle of marginotomy in template synthesis of polynucleotides]. Dokl Akad Nauk SSSR. 1971;201:1496–9.

    CAS  PubMed  Google Scholar 

  3. Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41:181–90.

    Article  CAS  PubMed  Google Scholar 

  4. Harley CB. Aging of cultured human skin fibroblasts. Methods Mol Biol. 1990;5:25–32.

    CAS  PubMed  Google Scholar 

  5. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52.

    Article  CAS  PubMed  Google Scholar 

  6. Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019;19:439–53.

    Article  CAS  PubMed  Google Scholar 

  7. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    Article  CAS  PubMed  Google Scholar 

  8. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23:303–14.

    Article  CAS  PubMed  Google Scholar 

  9. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24:2463–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev. 2014;28:99–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soto-Gamez A, Quax WJ, Demaria M. Regulation of survival networks in senescent cells: from mechanisms to interventions. J Mol Biol. 2019;431:2629–43.

    Article  CAS  PubMed  Google Scholar 

  12. Foster DA, Yellen P, Xu L, Saqcena M. Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer. 2010;1:1124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campisi J. The biology of replicative senescence. Eur J Cancer. 1997;33:703–9.

  14. Sager R. Senescence as a mode of tumor suppression. Environ Health Perspect. 1991;93:59–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96.

    Article  PubMed  CAS  Google Scholar 

  16. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 2014;15:1139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang B, Kohli J, Demaria M. Senescent cells in cancer therapy: friends or foes? Trends Cancer. 2020;6:838–57.

  19. Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553:96–100.

    Article  CAS  PubMed  Google Scholar 

  20. Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol. 2019;21:94–101.

    Article  CAS  PubMed  Google Scholar 

  21. Saleh T, Tyutyunyk-Massey L, Murray GF, Alotaibi MR, Kawale AS, Elsayed Z, et al. Tumor cell escape from therapy-induced senescence. Biochem Pharm. 2019;162:202–12.

    Article  CAS  PubMed  Google Scholar 

  22. Crowe EP, Nacarelli T, Bitto A, Lerner C, Sell C, Torres C. Detecting senescence: methods and approaches. Methods Mol Biol. 2014;1170:425–45.

    Article  PubMed  CAS  Google Scholar 

  23. Yegorov YE, Chernov DN, Akimov SS, Akhmalisheva AK, Smirnova YB, Shinkarev DB, et al. Blockade of telomerase function by nucleoside analogs. Biochem (Mosc). 1997;62:1296–305.

    CAS  Google Scholar 

  24. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res. 2000;257:162–71.

    Article  CAS  PubMed  Google Scholar 

  25. Yang NC, Hu ML. The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2015;40:813–9.

    Article  CAS  Google Scholar 

  26. Salmonowicz H, Passos JF. Detecting senescence: a new method for an old pigment. Aging Cell. 2017;16:432–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dreesen O, Ong PF, Chojnowski A, Colman A. The contrasting roles of lamin B1 in cellular aging and human disease. Nucleus. 2013;4:283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T. Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions. Am J Pathol. 1998;153:1741–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602.

    Article  CAS  PubMed  Google Scholar 

  30. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–42.

    Article  PubMed  CAS  Google Scholar 

  31. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–5.

    Article  CAS  PubMed  Google Scholar 

  32. Mooi WJ, Peeper D. Oncogene-induced cell senescence–halting on the road to cancer. N. Engl J Med. 2006;355:1037–46.

    Article  CAS  PubMed  Google Scholar 

  33. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santinon G, Brian I, Pocaterra A, Romani P, Franzolin E, Rampazzo C, et al. dNTP metabolism links mechanical cues and YAP/TAZ to cell growth and oncogene-induced senescence. EMBO J. 2018;37:e97780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. DiMauro T, David G. Ras-induced senescence and its physiological relevance in cancer. CCDT. 2010;10:869–446.

    Article  CAS  Google Scholar 

  36. Serrano I, McDonald PC, Lock F, Muller WJ, Dedhar S. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat Commun. 2013;4:2976.

    Article  PubMed  CAS  Google Scholar 

  37. Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A, et al. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep. 2013;3:1252–65.

    Article  CAS  PubMed  Google Scholar 

  38. Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G, et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature. 2013;498:109–12.

    Article  CAS  PubMed  Google Scholar 

  39. Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017;27:2652–2660.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–27.

    Article  CAS  PubMed  Google Scholar 

  41. Johnsen JI, Dyberg C, Wickström M. Neuroblastoma-A neural crest derived embryonal malignancy. Front Mol Neurosci. 2019;12:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brodeur GM. Spontaneous regression of neuroblastoma. Cell Tissue Res. 2018;372:277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cohn SL, Pearson ADJ, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The International Neuroblastoma Risk Group (INRG) Classification System: an INRG task force report. J Clin Oncol. 2009;27:289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maris JM. Recent advances in neuroblastoma. N. Engl J Med. 2010;362:2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Prim. 2016;2:16078.

    Article  PubMed  Google Scholar 

  46. Brady SW, Liu Y, Ma X, Gout AM, Hagiwara K, Zhou X, et al. Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations. Nat Commun. 2020;11:1–13.

  47. Ackermann S, Cartolano M, Hero B, Welte A, Kahlert Y, Roderwieser A, et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science. 2018;362:1165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Depuydt P, Boeva V, Hocking TD, Cannoodt R, Ambros IM, Ambros PF, et al. Genomic amplifications and distal 6q loss: novel markers for poor survival in high-risk neuroblastoma patients. J Natl Cancer Inst. 2018;110:1084–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hiyama E, Hiyama K, Yokoyama T, Matsuura Y, Piatyszek MA, Shay JW. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med. 1995;1:249–55.

    Article  CAS  PubMed  Google Scholar 

  50. Valentijn LJ, Koster J, Haneveld F, Aissa RA, Sluis P, Broekmans ME. Functional MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc Natl Acad Sci USA. 2012;109:19190–5.

  51. Clynes D, Higgs DR, Gibbons RJ. The chromatin remodeller ATRX: a repeat offender in human disease. Trends Biochem Sci. 2013;38:461–6.

    Article  CAS  PubMed  Google Scholar 

  52. Clynes D, Jelinska C, Xella B, Ayyub H, Scott C, Mitson M, et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat Commun. 2015;6:7538.

    Article  PubMed  Google Scholar 

  53. Samy M, Gattolliat C-H, Pendino F, Hillion J, Nguyen E, Bombard S, et al. Loss of the malignant phenotype of human neuroblastoma cells by a catalytically inactive dominant-negative hTERT mutant. Mol Cancer Ther. 2012;11:2384–93.

    Article  CAS  PubMed  Google Scholar 

  54. Hansford LM, Thomas WD, Keating JM, Burkhart CA, Peaston AE, Norris MD, et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci USA. 2004;101:12664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Calao M, Sekyere EO, Cui HJ, Cheung BB, Thomas WD, Keating J, et al. Direct effects of Bmi1 on p53 protein stability inactivates oncoprotein stress responses in embryonal cancer precursor cells at tumor initiation. Oncogene. 2013;32:3616–26.

    Article  CAS  PubMed  Google Scholar 

  56. De Wyn J, Zimmerman MW, Weichert-Leahey N, Nunes C, Cheung BB, Abraham BJ, et al. MEIS2 is an adrenergic core regulatory transcription factor involved in early initiation of TH-MYCN-driven neuroblastoma formation. Cancers. 2021;13:4783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yakushiji-Kaminatsui N, Kondo T, Hironaka K-I, Sharif J, Endo TA, Nakayama M, et al. Variant PRC1 competes with retinoic acid-related signals to repress Meis2 in the mouse distal forelimb bud. Development. 2018;145:dev166348.

    Article  PubMed  CAS  Google Scholar 

  58. Rickman DS, Schulte JH, Eilers M. The expanding world of N-MYC-driven tumors. Cancer Discov. 2018;8:150–63.

    Article  CAS  PubMed  Google Scholar 

  59. Zanotti S, Vanhauwaert S, Van Neste C, Olexiouk V, Van Laere J, Verschuuren M, et al. MYCN-induced nucleolar stress drives an early senescence-like transcriptional program in hTERT-immortalized RPE cells. Sci Rep. 2021;11:14454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging. 2019;11:2512–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boon K, Caron HN, van Asperen R, Valentijn L, Hermus M-C, van Sluis P, et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 2001;20:1383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell. 1992;69:119–28.

    Article  CAS  PubMed  Google Scholar 

  63. Steiner P, Philipp A, Lukas J, Godden-Kent D, Pagano M, Mittnacht S, et al. Identification of a Myc-dependent step during the formation of active G1 cyclin-cdk complexes. EMBO J. 1995;14:4814–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pérez-Roger I, Solomon DL, Sewing A, Land H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27(Kip1) binding to newly formed complexes. Oncogene. 1997;14:2373–81.

    Article  PubMed  Google Scholar 

  65. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318:533–8.

    Article  CAS  PubMed  Google Scholar 

  66. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL. Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999;13:2658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jäger R, Herzer U, Schenkel J, Weiher H. Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates c-myc-induced tumorigenesis of the mammary gland in transgenic mice. Oncogene. 1997;15:1787–95.

    Article  PubMed  Google Scholar 

  68. Pelengaris S, Khan M, Evan GI. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell. 2002;109:321–34.

    Article  CAS  PubMed  Google Scholar 

  69. Land H, Parada LF, Weinberg RA. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983;304:596–602.

    Article  CAS  PubMed  Google Scholar 

  70. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell. 1987;49:465–75.

    Article  CAS  PubMed  Google Scholar 

  71. Carnero A, Beach DH. Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene. 2004;23:6006–11.

    Article  CAS  PubMed  Google Scholar 

  72. Zhuang D, Mannava S, Grachtchouk V, Tang W-H, Patil S, Wawrzyniak JA, et al. C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene. 2008;27:6623–34.

    Article  CAS  PubMed  Google Scholar 

  73. Juin P, Hueber A-O, Littlewood T, Evan G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 1999;13:1367–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fulda S, Lutz W, Schwab M, Debatin KM. MycN sensitizes neuroblastoma cells for drug-triggered apoptosis. Med Pediatr Oncol. 2000;35:582–4.

    Article  CAS  PubMed  Google Scholar 

  75. Grandori C, Wu K-J, Fernandez P, Ngouenet C, Grim J, Clurman BE, et al. Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev. 2003;17:1569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robinson K, Asawachaicharn N, Galloway DA, Grandori C. c-Myc accelerates S-phase and requires WRN to avoid replication stress. PLoS ONE. 2009;4:e5951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D, et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol. 2010;12:54–9. sup pp 1-14

    Article  CAS  PubMed  Google Scholar 

  78. Reimann M, Lee S, Loddenkemper C, Dörr JR, Tabor V, Aichele P, et al. Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell. 2010;17:262–72.

    Article  CAS  PubMed  Google Scholar 

  79. Hsu C-H, Altschuler SJ, Wu LF. Patterns of early p21 dynamics determine proliferation-senescence cell fate after chemotherapy. Cell 2019;178:361–373.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Albihn A, Johnsen JI, Henriksson MA. MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res. 2010;107:163–224.

    Article  CAS  PubMed  Google Scholar 

  81. Mundo L, Ambrosio MR, Raimondi F, Del Porro L, Guazzo R, Mancini V, et al. Molecular switch from MYC to MYCN expression in MYC protein negative Burkitt lymphoma cases. Blood Cancer J. 2019;9:91.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Smith K, Dalton S. Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med. 2010;5:947–59.

    Article  CAS  PubMed  Google Scholar 

  83. Nesbit CE, Grove LE, Yin X, Prochownik EV. Differential apoptotic behaviors of c-myc, N-myc, and L-myc oncoproteins. Cell Growth Differ. 1998;9:731–41.

    CAS  PubMed  Google Scholar 

  84. Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma origin and therapeutic targets for immunotherapy. J Immunol Res. 2018;2018:7394268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002;62:1876–83.

    Google Scholar 

  86. Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, et al. Therapy-induced senescence: an ‘old’ friend becomes the enemy. Cancers. 2020;12:E822.

    Article  PubMed  CAS  Google Scholar 

  87. Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, et al. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem. 2019;171:129–68.

    Article  CAS  PubMed  Google Scholar 

  88. Taschner-Mandl S, Schwarz M, Blaha J, Kauer M, Kromp F, Frank N, et al. Metronomic topotecan impedes tumor growth of MYCN-amplified neuroblastoma cells in vitro and in vivo by therapy induced senescence. Oncotarget. 2016;7:3571–86.

    Article  PubMed  Google Scholar 

  89. Ryl T, Kuchen EE, Bell E, Shao C, Flórez AF, Mönke G, et al. Cell-cycle position of single MYC-driven cancer cells dictates their susceptibility to a chemotherapeutic drug. Cell Syst. 2017;5:237–250.e8.

    Article  CAS  PubMed  Google Scholar 

  90. Bojko A, Czarnecka-Herok J, Charzynska A, Dabrowski M, Sikora E. Diversity of the senescence phenotype of cancer cells treated with chemotherapeutic agents. Cells 2019;8:E1501.

    Article  PubMed  CAS  Google Scholar 

  91. Narath R, Ambros IM, Kowalska A, Bozsaky E, Boukamp P, Ambros PF. Induction of senescence in MYCN amplified neuroblastoma cell lines by hydroxyurea. Genes Chromosomes Cancer. 2007;46:130–42.

    Article  CAS  PubMed  Google Scholar 

  92. Cronstein BN, Aune TM. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol. 2020;16:145–54.

    Article  CAS  PubMed  Google Scholar 

  93. Baluapuri A, Wolf E, Eilers M. Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol. 2020;21:255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Büchel G, Carstensen A, Mak K-Y, Roeschert I, Leen E, Sumara O, et al. Association with Aurora-A controls N-MYC-dependent promoter escape and pause release of RNA polymerase II during the cell cycle. Cell Rep. 2017;21:3483–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sells TB, Chau R, Ecsedy JA, Gershman RE, Hoar K, Huck J, et al. MLN8054 and Alisertib (MLN8237): discovery of selective oral Aurora A inhibitors. ACS Med Chem Lett. 2015;6:630–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang Y, Ding L, Zhou Q, Fen L, Cao Y, Sun J, et al. Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells. Cancer Cell Int. 2020;20:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Azuhata T, Scott D, Takamizawa S, Wen J, Davidoff A, Fukuzawa M, et al. The inhibitor of apoptosis protein survivin is associated with high-risk behavior of neuroblastoma. J Pediatr Surg. 2001;36:1785–91.

    Article  CAS  PubMed  Google Scholar 

  98. Lamers F, van der Ploeg I, Schild L, Ebus ME, Koster J, Hansen BR, et al. Knockdown of survivin (BIRC5) causes apoptosis in neuroblastoma via mitotic catastrophe. Endocr Relat Cancer. 2011;18:657–68.

    Article  CAS  PubMed  Google Scholar 

  99. Bogen D, Wei JS, Azorsa DO, Ormanoglu P, Buehler E, Guha R, et al. Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma. Oncotarget 2015;6:35247–62.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Moreno L, Barone G, DuBois SG, Molenaar J, Fischer M, Schulte J, et al. Accelerating drug development for neuroblastoma: Summary of the Second Neuroblastoma Drug Development Strategy forum from Innovative Therapies for Children with Cancer and International Society of Paediatric Oncology Europe Neuroblastoma. Eur J Cancer. 2020;136:52–68.

    Article  CAS  PubMed  Google Scholar 

  101. Sun M, Veschi V, Bagchi S, Xu M, Mendoza A, Liu Z, et al. Targeting the chromosomal passenger complex subunit INCENP induces polyploidization, apoptosis and senescence in neuroblastoma. Cancer Res. 2019;79:4937–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Poratti M, Marzaro G. Third-generation CDK inhibitors: a review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib. Eur J Med Chem. 2019;172:143–53.

    Article  CAS  PubMed  Google Scholar 

  103. Dreidax D, Bannert S, Henrich K-O, Schröder C, Bender S, Oakes CC, et al. p19-INK4d inhibits neuroblastoma cell growth, induces differentiation and is hypermethylated and downregulated in MYCN-amplified neuroblastomas. Hum Mol Genet. 2014;23:6826–37.

    Article  CAS  PubMed  Google Scholar 

  104. Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D, et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res. 2013;19:6173–82.

    Article  CAS  PubMed  Google Scholar 

  105. Ross RA, Spengler BA, Biedler JL. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst. 1983;71:741–7.

    CAS  PubMed  Google Scholar 

  106. Wainwright LJ, Lasorella A, Iavarone A. Distinct mechanisms of cell cycle arrest control the decision between differentiation and senescence in human neuroblastoma cells. Proc Natl Acad Sci USA. 2001;98:9396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jauhari A, Singh T, Pandey A, Singh P, Singh N, Srivastava AK, et al. Differentiation induces dramatic changes in miRNA profile, where loss of dicer diverts differentiating SH-SY5Y cells toward senescence. Mol Neurobiol. 2017;54:4986–95.

    Article  CAS  PubMed  Google Scholar 

  108. Squillaro T, Alessio N, Cipollaro M, Melone MAB, Hayek G, Renieri A, et al. Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence: new perspective for Rett syndrome. Mol Biol Cell. 2012;23:1435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Salloum R, Hummel TR, Kumar SS, Dorris K, Li S, Lin T, et al. A molecular biology and phase II study of imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: a pediatric brain tumor consortium study. J Neurooncol. 2016;129:443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hosoi T, Nakatsu K, Shimamoto A, Tahara H, Ozawa K. Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death. Neurosci Lett. 2016;629:241–4.

    Article  CAS  PubMed  Google Scholar 

  111. Edelman MJ, Lapidus R, Feliciano J, Styblo M, Beumer JH, Liu T, et al. Phase I and pharmacokinetic evaluation of the anti-telomerase agent KML-001 with cisplatin in advanced solid tumors. Cancer Chemother Pharm. 2016;78:959–67.

    Article  CAS  Google Scholar 

  112. Sugarman ET, Zhang G, Shay JW. In perspective: an update on telomere targeting in cancer. Mol Carcinog. 2019;58:1581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tong AS, Stern JL, Sfeir A, Kartawinata M, de Lange T, Zhu X-D, et al. ATM and ATR signaling regulate the recruitment of human telomerase to telomeres. Cell Rep. 2015;13:1633–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science. 2015;347:273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Foote KM, Nissink JWM, McGuire T, Turner P, Guichard S, Yates JWT, et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. J Med Chem. 2018;61:9889–907.

    Article  CAS  PubMed  Google Scholar 

  116. George SL, Parmar V, Lorenzi F, Marshall LV, Jamin Y, Poon E, et al. Novel therapeutic strategies targeting telomere maintenance mechanisms in high-risk neuroblastoma. J Exp Clin Cancer Res. 2020;39:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Dörr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Däbritz JHM, et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature. 2013;501:421–5.

    Article  PubMed  CAS  Google Scholar 

  119. Correia-Melo C, Marques FDM, Anderson R, Hewitt G, Hewitt R, Cole J, et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016;35:724–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roberson RS, Kussick SJ, Vallieres E, Chen S-YJ, Wu DY. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res. 2005;65:2795–803.

    Article  CAS  PubMed  Google Scholar 

  121. Wang Q, Wu PC, Roberson RS, Luk BV, Ivanova I, Chu E, et al. Survivin and escaping in therapy-induced cellular senescence. Int J Cancer. 2011;128:1546–58.

    Article  CAS  PubMed  Google Scholar 

  122. Capalbo G, Rödel C, Stauber RH, Knauer SK, Bache M, Kappler M, et al. The role of survivin for radiation therapy. Strahlenther Onkol. 2007;183:593–9.

    Article  PubMed  Google Scholar 

  123. Engels K, Knauer SK, Metzler D, Simf C, Struschka O, Bier C, et al. Dynamic intracellular survivin in oral squamous cell carcinoma: underlying molecular mechanism and potential as an early prognostic marker. J Pathol. 2007;211:532–40.

    Article  CAS  PubMed  Google Scholar 

  124. Adida C, Berrebi D, Peuchmaur M, Reyes-Mugica M, Altieri DC. Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet. 1998;351:882–3.

    Article  CAS  PubMed  Google Scholar 

  125. McKenzie PP, Danks MK, Kriwacki RW, Harris LC. P21Waf1/Cip1 dysfunction in neuroblastoma: a novel mechanism of attenuating G0-G1 cell cycle arrest. Cancer Res. 2003;63:3840–4.

    CAS  PubMed  Google Scholar 

  126. Decaesteker B, Denecker G, Van Neste C, Dolman EM, Van Loocke W, Gartlgruber M, et al. TBX2 is a neuroblastoma core regulatory circuitry component enhancing MYCN/FOXM1 reactivation of DREAM targets. Nat Commun. 2018;9:4866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Jacobs JJ, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM, et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet. 2000;26:291–9.

    Article  CAS  PubMed  Google Scholar 

  128. Prince S, Carreira S, Vance KW, Abrahams A, Goding CR. Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res. 2004;64:1669–74.

    Article  CAS  PubMed  Google Scholar 

  129. Bierbrauer A, Jacob M, Vogler M, Fulda S. A direct comparison of selective BH3-mimetics reveals BCL-XL, BCL-2 and MCL-1 as promising therapeutic targets in neuroblastoma. Br J Cancer. 2020;122:1544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carpenter VJ, Saleh T, Gewirtz DA. Senolytics for cancer therapy: is all that glitters really gold? Cancers. 2021;13:723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Joshua Robert Goulding from the Department of Biomolecular Medicine at Center for Medical Genetics Ghent for providing English language editing and review assistance.

Funding

This research was supported by ‘Kom op tegen Kanker’ (Stand up to Cancer), the Flemish Cancer Society (research grant to F. Speleman); Kinderkankerfonds, the non-profit childhood cancer foundation under Belgian law (research grant to F. Speleman); Olivia Hendrickx Research Fund vzw. The following authors B. Decaesteker (1238420 N) and S. Vanhauwaert (12U4718N) are supported by an FWO grant.

Author information

Authors and Affiliations

Authors

Contributions

SZ, WHDV and FS: conceptualisation. SZ, BD and SV: literature research and preparation of the first draft of the paper. SZ: table content and figure design. BD, BDW, WHDV and FS: critical revision and editing. All authors have read and agreed to the published version of the paper.

Corresponding author

Correspondence to Frank Speleman.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanotti, S., Decaesteker, B., Vanhauwaert, S. et al. Cellular senescence in neuroblastoma. Br J Cancer 126, 1529–1538 (2022). https://doi.org/10.1038/s41416-022-01755-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01755-0

This article is cited by

Search

Quick links