Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Genomics

Integration of DNA sequencing with population pharmacokinetics to improve the prediction of irinotecan exposure in cancer patients

Abstract

Background

Irinotecan (CPT-11) is an anticancer agent widely used to treat adult solid tumours. Large interindividual variability in the clearance of irinotecan and SN-38, its active and toxic metabolite, results in highly unpredictable toxicity.

Methods

In 217 cancer patients treated with intravenous irinotecan single agent or in combination, germline DNA was used to interrogate the variation in 84 genes by next-generation sequencing. A stepwise analytical framework including a population pharmacokinetic model with SNP- and gene-based testing was used to identify demographic/clinical/genetic factors that influence the clearance of irinotecan and SN-38.

Results

Irinotecan clearance was influenced by rs4149057 in SLCO1B1, body surface area, and co-administration of 5-fluorouracil/leucovorin/bevacizumab. SN-38 clearance was influenced by rs887829 in UGT1A1, pre-treatment total bilirubin, and EGFR rare variant burden. Within each UGT1A1 genotype group, elevated pre-treatment total bilirubin and/or presence of at least one rare variant in EGFR resulted in significantly lower SN-38 clearance. The model reduced the interindividual variability in irinotecan clearance from 38 to 34% and SN-38 clearance from 49 to 32%.

Conclusions

This new model significantly reduced the interindividual variability in the clearance of irinotecan and SN-38. New genetic factors of variability in clearance have been identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stepwise analysis workflow.
Fig. 2: Significant patient characteristics and genetic variants associated with irinotecan clearance and SN-38 clearance.
Fig. 3: Associations of ηCL4 with pre-treatment bilirubin and rs887829 in UGT1A1.
Fig. 4: The combined influence of the significant factors on the irinotecan clearance (a) and SN-38 clearance (b).

Similar content being viewed by others

Data availability

The data are not publicly available due to patient confidentiality. The data that support the findings of the current study are available within the article or upon request. Supplementary information is available at the British Journal of Cancer’s website.

Code availability

The Mlxtran code for population pharmacokinetic modelling and the R code for SNP- and gene-based analyses are available upon request.

References

  1. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. 2018;57:1229–54.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pfizer. Pfizer, CAMPTOSAR® (irinotecan HCl) prescribing information. 2021. https://www.pfizermedicalinformation.com/en-us/camptosar. Accessed 24 Mar 2021.

  3. Ipsen. Ipsen, ONIVYDE® (irinotecan liposome) prescribing information. 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207793lbl.pdf. Accessed 4 Mar 2021.

  4. Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med. 2000;343:905–14.

    Article  CAS  PubMed  Google Scholar 

  5. Ratain MJ. Irinotecan dosing: does the CPT in CPT-11 stand for “Can’t Predict Toxicity”? J Clin Oncol. 2002;20:7–8.

    Article  PubMed  Google Scholar 

  6. Lyman GH. Febrile neutropenia: an ounce of prevention or a pound of cure. J Oncol Pract. 2019;15:27–9.

    Article  PubMed  Google Scholar 

  7. Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2002;2:43–7.

    Article  CAS  PubMed  Google Scholar 

  8. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009;27:2604–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramchandani RP, Wang Y, Booth BP, Ibrahim A, Johnson JR, Rahman A, et al. The role of SN-38 exposure, UGT1A1*28 polymorphism, and baseline bilirubin level in predicting severe irinotecan toxicity. J Clin Pharmacol. 2007;47:78–86.

    Article  CAS  PubMed  Google Scholar 

  10. Xie R, Mathijssen RHJ, Sparreboom A, Verweij J, Karlsson MO. Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther. 2002;72:265–75.

    Article  CAS  PubMed  Google Scholar 

  11. Li M, Seiser EL, Baldwin RM, Ramirez J, Ratain MJ, Innocenti F, et al. ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. Pharmacogenomics J. 2018;18:35–42.

    Article  CAS  PubMed  Google Scholar 

  12. Han J-Y, Lim H-S, Shin ES, Yoo Y-K, Park YH, Lee J-E, et al. Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer. 2008;59:69–75.

    Article  PubMed  Google Scholar 

  13. Xie R, Mathijssen RHJ, Sparreboom A, Verweij J, Karlsson MO. Clinical pharmacokinetics of irinotecan and its metabolites: a population analysis. J Clin Oncol. 2002;20:3293–301.

    Article  CAS  PubMed  Google Scholar 

  14. Klein CE, Gupta E, Reid JM, Atherton PJ, Sloan JA, Pitot HC, et al. Population pharmacokinetic model for irinotecan and two of its metabolites, SN-38 and SN-38 glucuronide. Clin Pharmacol Ther. 2002;72:638–47.

    Article  CAS  PubMed  Google Scholar 

  15. de Man FM, van Eerden RAG, van Doorn GM, Oomen-de Hoop E, Koolen SLW, Olieman JF, et al. Effects of protein and calorie restriction on the metabolism and toxicity profile of irinotecan in cancer patients. Clin Pharmacol Ther. 2021;109:1304–13.

  16. Toffoli G, Sharma MR, Marangon E, Posocco B, Gray E, Mai Q, et al. Genotype-guided dosing study of FOLFIRI plus bevacizumab in patients with metastatic colorectal cancer. Clin Cancer Res. 2017;23:918–24.

    Article  CAS  PubMed  Google Scholar 

  17. Glimelius B, Garmo H, Berglund A, Fredriksson LA, Berglund M, Kohnke H, et al. Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer. Pharmacogenomics J. 2011;11:61–71.

    Article  CAS  PubMed  Google Scholar 

  18. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22:1382–8.

    Article  CAS  PubMed  Google Scholar 

  19. Innocenti F, Schilsky RL, Ramírez J, Janisch L, Undevia S, House LK, et al. Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol. 2014;32:2328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Bol JM, Mathijssen RHJ, Creemers G-JM, Planting AST, Loos WJ, Wiemer EAC, et al. A CYP3A4 phenotype-based dosing algorithm for individualized treatment of irinotecan. Clin Cancer Res. 2010;16:736–42.

    Article  PubMed  Google Scholar 

  21. Mathijssen RHJ, de Jong FA, van Schaik RHN, Lepper ER, Friberg LE, Rietveld T, et al. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J Natl Cancer Inst. 2004;96:1585–92.

    Article  CAS  PubMed  Google Scholar 

  22. de Jong FA, Kehrer DFS, Mathijssen RHJ, Creemers G-J, de Bruijn P, van Schaik RHN, et al. Prophylaxis of irinotecan-induced diarrhea with neomycin and potential role for UGT1A1*28 genotype screening: a double-blind, randomized, placebo-controlled study. Oncologist. 2006;11:944–54.

    Article  PubMed  Google Scholar 

  23. Gordon AS, Fulton RS, Qin X, Mardis ER, Nickerson DA, Scherer S. PGRNseq: a targeted capture sequencing panel for pharmacogenetic research and implementation. Pharmacogenet Genomics. 2016;26:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28:481–504.

    Article  CAS  PubMed  Google Scholar 

  25. Monolox. Monolix 2019R1 User guide. http://monolix.lixoft.com/single-page/. Accessed 17 Jul 2020.

  26. Monolix. Population parameter using SAEM algorithm. http://monolix.lixoft.com/tasks/population-parameter-estimation-using-saem/. Accessed 14 Jul 2020.

  27. Robert CP, Casella G. Monte Carlo statistical methods. New York, NY: Springer New York; 2004.

  28. Traynard P, Ayral G, Twarogowska M, Chauvin J. Efficient pharmacokinetic modeling workflow with the monolixsuite: a case study of remifentanil. CPT Pharmacometrics Syst Pharmacol. 2020;9:198–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. 2012;91:224–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dering C, Hemmelmann C, Pugh E, Ziegler A. Statistical analysis of rare sequence variants: an overview of collapsing methods. Genet Epidemiol. 2011;35:S12–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rsmlx package. R Documentation. https://cran.r-project.org/web/packages/Rsmlx/Rsmlx.pdf. Accessed 23 Oct 2021.

  32. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat. 2006;15:651–74.

    Article  Google Scholar 

  33. Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res. 2001;7:2182–94.

    CAS  PubMed  Google Scholar 

  34. Loos WJ, Verweij J, Gelderblom HJ, de Jonge MJ, Brouwer E, Dallaire BK, et al. Role of erythrocytes and serum proteins in the kinetic profile of total 9-amino-20(S)-camptothecin in humans. Anticancer Drugs. 1999;10:705–10.

    Article  CAS  PubMed  Google Scholar 

  35. Oyaga-Iriarte E, Insausti A, Sayar O, Aldaz A. Population pharmacokinetic model of irinotecan and its metabolites in patients with metastatic colorectal cancer. Eur J Clin Pharmacol. 2019;75:529–42.

    Article  CAS  PubMed  Google Scholar 

  36. Gillis NK, Patel JN, Innocenti F. Clinical implementation of germ line cancer pharmacogenetic variants during the next-generation sequencing era. Clin Pharmacol Ther. 2014;95:269–80.

    Article  CAS  PubMed  Google Scholar 

  37. Gammal RS, Court MH, Haidar CE, Iwuchukwu OF, Gaur AH, Alvarellos M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin Pharmacol Ther 2016;99:363–9.

    Article  CAS  PubMed  Google Scholar 

  38. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–7.

  39. Vítek L. Bilirubin as a signaling molecule. Med Res Rev. 2020;40:1335–51.

    Article  PubMed  Google Scholar 

  40. Okumura M, Iwakiri T, Takagi A, Hirabara Y, Kawano Y, Arimori K. Hepatocyte growth factor suppresses the anticancer effect of irinotecan by decreasing the level of active metabolite in HepG2 cells. Biochem Pharmacol. 2011;82:1720–30.

    Article  CAS  PubMed  Google Scholar 

  41. Yashiro M, Qiu H, Hasegawa T, Zhang X, Matsuzaki T, Hirakawa K. An EGFR inhibitor enhances the efficacy of SN38, an active metabolite of irinotecan, in SN38-refractory gastric carcinoma cells. Br J Cancer. 2011;105:1522–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mathijssen RHJ, Verweij J, de Jonge MJA, Nooter K, Stoter G, Sparreboom A. Impact of body-size measures on irinotecan clearance: alternative dosing recommendations. J Clin Oncol. 2002;20:81–7.

    Article  CAS  PubMed  Google Scholar 

  43. Iusuf D, Ludwig M, Elbatsh A, van Esch A, van de Steeg E, Wagenaar E, et al. OATP1A/1B transporters affect irinotecan and SN-38 pharmacokinetics and carboxylesterase expression in knockout and humanized transgenic mice. Mol Cancer Ther. 2014;13:492–503.

    Article  CAS  PubMed  Google Scholar 

  44. Ramsey LB, Bruun GH, Yang W, Treviño LR, Vattathil S, Scheet P, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crona DJ, Ramirez J, Qiao W, de Graan A-J, Ratain MJ, van Schaik RHN, et al. Clinical validity of new genetic biomarkers of irinotecan neutropenia: an independent replication study. Pharmacogenomics J. 2016;16:54–9.

    Article  CAS  PubMed  Google Scholar 

  46. Tsuboya A, Kubota Y, Ishida H, Ohkuma R, Ishiguro T, Hirasawa Y, et al. Minimal contribution of the hepatic uptake transporter OATP1B1 to the inter-individual variability in SN-38 pharmacokinetics in cancer patients without severe renal failure. Cancer Chemother Pharmacol. 2021;88:543–53.

    Article  CAS  PubMed  Google Scholar 

  47. Saltz LB, Kanowitz J, Kemeny NE, Schaaf L, Spriggs D, Staton BA, et al. Phase I clinical and pharmacokinetic study of irinotecan, fluorouracil, and leucovorin in patients with advanced solid tumors. J Clin Oncol. 1996;14:2959–67.

    Article  CAS  PubMed  Google Scholar 

  48. Genentech, Inc. Avastin® (bevacizumab) prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/125085s0169lbl.pdf. Accessed 23 Oct 2021.

  49. van der Bol JM, Mathijssen RHJ, Loos WJ, Friberg LE, van Schaik RHN, de Jonge MJA, et al. Cigarette smoking and irinotecan treatment: pharmacokinetic interaction and effects on neutropenia. J Clin Oncol. 2007;25:2719–26.

    Article  PubMed  Google Scholar 

  50. Mathijssen RHJ. Effects of St. John’s Wort on irinotecan metabolism. Cancer Spectrum Knowl Environ. 2002;94:1247–9.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lixoft for the expert advice on Monolix and the Information Technology Services Research Computing group at the University of North Carolina at Chapel Hill for their technical support.

Funding

This work was supported by discretionary funding from FI and the Division of Pharmacology and Experimental Therapeutics of the UNC Eshelman School of Pharmacy (to FI).

Author information

Authors and Affiliations

Authors

Contributions

FI, RRB, and SK developed conception and design. FI, DAN, RHJM, GT, EC, NJC, and ASE collected and assembled the data. SK, RRB, AF, and FI developed methodology. SK, RRB, FI, AF, KLM, and ASE performed data analysis and interpretation. SK, FI, and RRB conducted manuscript writing. All authors discussed the results and contributed to the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Federico Innocenti.

Ethics declarations

Competing interests

RRB has received funding from the US Department of Defense. The remaining authors state no conflict of interest.

Ethics approval and consent to participate

All patients provided written informed consent to this study, and all trials were approved by the local institutional review boards (IRB). This study was conducted according to the guidelines provided by the Declaration of Helsinki.

Consent to publish

All patients provided written informed consent for their data to be used for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karas, S., Etheridge, A.S., Nickerson, D.A. et al. Integration of DNA sequencing with population pharmacokinetics to improve the prediction of irinotecan exposure in cancer patients. Br J Cancer 126, 640–651 (2022). https://doi.org/10.1038/s41416-021-01589-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01589-2

Search

Quick links