Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Characterisation of circulating tumour cell phenotypes identifies a partial-EMT sub-population for clinical stratification of pancreatic cancer

Abstract

Background

Limited accessibility of the tumour precludes longitudinal characterisation for therapy guidance in pancreatic ductal adenocarcinoma (PDAC).

Methods

We utilised dielectrophoresis-field flow fractionation (DEP-FFF) to isolate circulating tumour cells (CTCs) in 272 blood draws from 74 PDAC patients (41 localised, 33 metastatic) to non-invasively monitor disease progression.

Results

Analysis using multiplex imaging flow cytometry revealed four distinct sub-populations of CTCs: epithelial (E-CTC), mesenchymal (M-CTC), partial epithelial-mesenchymal transition (pEMT-CTC) and stem cell-like (SC-CTC). Overall, CTC detection rate was 76.8% (209/272 draws) and total CTC counts did not correlate with any clinicopathological variables. However, the proportion of pEMT-CTCs (prop-pEMT) was correlated with advanced disease, worse progression-free and overall survival in all patients, and earlier recurrence after resection.

Conclusion

Our results underscore the importance of immunophenotyping and quantifying specific CTC sub-populations in PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Capture efficiency of epitope-independent microfluidics device.
Fig. 2: Number of CTCs identified in PDAC patients.
Fig. 3: Comparison of total counts in sub-populations.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics. CA Cancer J. Clin. 69, 7–34 (2019).

    Article  Google Scholar 

  2. Rhim, A. D., Mirek, E. T., Aiello, N. M., Maitra, A., Bailey, J. M., McAllister, F. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    Article  CAS  Google Scholar 

  3. Pecot, C. V., Bischoff, F. Z., Mayer, J. A., Wong, K. L., Pham, T., Bottsford-Miller, J. et al. A novel platform for detection of CK+ and CK− CTCs. Cancer Discov. 1, 580–586 (2011).

    Article  CAS  Google Scholar 

  4. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    Article  CAS  Google Scholar 

  5. Wei, T., Zhang, X., Zhang, Q., Yang, J., Chen, Q., Wang, J. et al. Vimentin-positive circulating tumor cells as a biomarker for diagnosis and treatment monitoring in patients with pancreatic cancer. Cancer Lett. 452, 237–243 (2019).

    Article  CAS  Google Scholar 

  6. Satelli, A., Batth, I., Brownlee, Z., Mitra, A., Zhou, S., Noh, H. et al. EMT circulating tumor cells detected by cell-surface vimentin are associated with prostate cancer progression. Oncotarget 8, 49329–49337 (2017).

    Article  Google Scholar 

  7. Satelli, A., Brownlee, Z., Mitra, A., Meng, Q. H. & Li, S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin. Chem. 61, 259–266 (2015).

    Article  CAS  Google Scholar 

  8. Chemi, F., Rothwell, D. G., McGranahan, N., Gulati, S., Abbosh, C., Pearce, S. P. et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat. Med. 25, 1534–1539 (2019).

    Article  CAS  Google Scholar 

  9. Nagrath, S., Jack, R. M., Sahai, V. & Simeone, D. M. Opportunities and challenges for pancreatic circulating tumor cells. Gastroenterology 151, 412–426 (2016).

    Article  Google Scholar 

  10. Kamyabi, N., Huang, J., Lee, J. J., Bernard, V., Semaan, A., Stephens, B. et al. A microfluidic device for label-free isolation of tumor cell clusters from unprocessed blood samples. Biomicrofluidics 13, 044111 (2019).

    Article  Google Scholar 

  11. DiPardo, B. J., Winograd, P., Court, C. M. & Tomlinson, J. S. Pancreatic cancer circulating tumor cells: applications for personalized oncology. Expert Rev. Mol. Diagn. 18, 809–820 (2018).

    Article  CAS  Google Scholar 

  12. Court, C. M., Ankeny, J. S., Sho, S., Hou, S., Li, Q., Hsieh, C. et al. Reality of single circulating tumor cell sequencing for molecular diagnostics in pancreatic cancer. J. Mol. Diagn. 18, 688–696 (2016).

    Article  CAS  Google Scholar 

  13. Lapin, M., Tjensvoll, K., Oltedal, S., Javle, M., Smaaland, R., Gilje, B. et al. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells. BMC Cancer 17, 390 (2017).

    Article  Google Scholar 

  14. Shim, S., Stemke-Hale, K., Tsimberidou, A. M., Noshari, J., Anderson, T. E. & Gascoyne, P. R. Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics 7, 11807 (2013).

    Article  Google Scholar 

  15. Shim, S., Stemke-Hale, K., Noshari, J., Becker, F. F. & Gascoyne, P. R. Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems. Biomicrofluidics 7, 11808 (2013).

    Article  Google Scholar 

  16. Gascoyne, P. R. & Shim, S. Isolation of circulating tumor cells by dielectrophoresis. Cancers 6, 545–579 (2014).

    Article  Google Scholar 

  17. Balasubramanian, P., Kinders, R. J., Kummar, S., Gupta, V., Hasegawa, D., Menachery, A. et al. Antibody-independent capture of circulating tumor cells of non-epithelial origin with the ApoStream(R) system. PLoS ONE 12, e0175414 (2017).

    Article  Google Scholar 

  18. Allenson, K., Castillo, J., San Lucas, F. A., Scelo, G., Kim, D. U., Bernard, V. et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann. Oncol. 28, 741–747 (2017).

  19. Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R. & Kasimir-Bauer, S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 11, R46 (2009).

    Article  Google Scholar 

  20. Liu, H., Sun, B., Wang, S., Liu, C., Lu, Y., Li, D. et al. Circulating tumor cells as a biomarker in pancreatic ductal adenocarcinoma. Cell Physiol. Biochem. 42, 373–382 (2017).

    Article  CAS  Google Scholar 

  21. Alix-Panabieres, C. & Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 14, 623–631 (2014).

    Article  CAS  Google Scholar 

  22. Aiello, N. M. & Kang, Y. Context-dependent EMT programs in cancer metastasis. J. Exp. Med. 216, 1016–1026 (2019).

    Article  CAS  Google Scholar 

  23. Porter, R. L., Magnus, N. K. C., Thapar, V., Morris, R., Szabolcs, A. Neyaz, A. et al. Epithelial to mesenchymal plasticity and differential response to therapies in pancreatic ductal adenocarcinoma. Proc. Natl Acad. Sci. USA 116, 26835–26845 (2019).

    Article  CAS  Google Scholar 

  24. Ting, D. T., Wittner, B. S., Ligorio, M., Vincent Jordan, N., Shah, A. M., Miyamoto, D. T. et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014).

    Article  CAS  Google Scholar 

  25. Gemenetzis, G., Groot, V. P., Yu, J., Ding, D., Teinor, J. A., Javed, A. A. et al. Circulating tumor cells dynamics in pancreatic adenocarcinoma correlate with disease status: results of the Prospective CLUSTER Study. Ann. Surg. 268, 408–420 (2018).

    Article  Google Scholar 

  26. Poruk, K. E., Valero, V. 3rd, Saunders, T., Blackford, A. L., Griffin, J. F., Poling, J. et al. Circulating tumor cell phenotype predicts recurrence and survival in pancreatic adenocarcinoma. Ann. Surg. 264, 1073–1081 (2016).

    Article  Google Scholar 

  27. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. Emt: 2016. Cell 166, 21–45 (2016).

    Article  CAS  Google Scholar 

  28. Aiello, N. M., Maddipati, R., Norgard, R. J., Balli, D., Li, J., Yuan, S. et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 45, 681–95 e4 (2018).

    Article  CAS  Google Scholar 

  29. Lytle, N. K., Ferguson, L. P., Rajbhandari, N., Gilroy, K., Fox, R. G., Deshpande, A. et al. A multiscale map of the stem cell state in pancreatic adenocarcinoma. Cell 177, 572–86 e22 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

A.M., P.A.G., H.A. Study Design: A.M., P.A.G., H.A., A.S., V.B., D.U.K. Provision of clinical samples and information: B.S., G.R.V., M.H.K. Samples processing: A.S., V.B., P.G., D.U.K. Microfluidics device design: P.G., F.A.S.L. Sample isolation: A.S., V.B., P.A.G., D.U.K., N.K. Samples staining and cytometry: A.S., V.B., P.A.G., D.U.K. Data analysis: J.H., F.A.S.L., J.J.L., W.Q., Y.S. P.A.G. Manuscript writing: A.S., V.B. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paola A. Guerrero.

Ethics declarations

Ethics approval and consent to participate

The study was performed in accordance with standard ethical guidelines approved by the institutional review board (IRB), protocol numbers PA11-0670 and PA15-0014 at MD Anderson Cancer Center, and in accordance with the Declaration of Helsinki. Patients provided their informed consent to participate in this study.

Data availability

All data generated and analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

A.M. receives royalties for a pancreatic cancer biomarker test from Cosmos Wisdom Biotechnology, and this financial relationship is managed and monitored by the UTMDACC Conflict of Interest Committee. A.M. is also listed as an inventor on a patent that has been licensed by Johns Hopkins University to Thrive Earlier Detection. The remaining authors declare no competing interests.

Funding information

This research was supported in part by the Cancer Prevention and Research Institute of Texas (CPRIT) (No. RP160517), NCI P50 CA221707, U01 CA196403 and U01 CA200468 to A.M. N.K. was supported by the CPRIT Research Training Program (No. RP170067). V.B. was supported by the CPRIT Research Training Program (Nos. RP140106 and RP170067) and NCI (Nos. T32CA217789-03 and U54CA096297). J.J.L. was supported by the National Institutes of Health (NIH) (No. T32CA009599). A.S. was supported by the German Research Foundation (SE-2616/2-1). D.U.K. was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1C1B5086234).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semaan, A., Bernard, V., Kim, D.U. et al. Characterisation of circulating tumour cell phenotypes identifies a partial-EMT sub-population for clinical stratification of pancreatic cancer. Br J Cancer 124, 1970–1977 (2021). https://doi.org/10.1038/s41416-021-01350-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01350-9

This article is cited by

Search

Quick links