Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular Diagnostics

Plasma-based early screening and monitoring of EGFR mutations in NSCLC patients by a 3-color digital PCR assay

Abstract

Background

Noninvasive plasma-based detection of EGFR mutations using digital PCR promises a fast, sensitive and reliable approach to predicting the efficiency of EGFR-TKI. However, the low throughput and high cost of digital PCR restricts its clinical application.

Methods

We designed a digital PCR assay, which can simultaneously detect 39 mutations of exons 18–21 of the EGFR gene. To assess overall performance, retrospective FFPE tissues from 30 NSCLC patients and plasma from 33 NSCLC patients were collected and analysed.

Results

The LoD of the EGFR mutations was as low as 0.308 copies/μL, and the linear correlation between the detected and expected values at different concentrations (0.01–10%) was low as well. Compared to ARMS-PCR in FFPE, the accuracy values of the dEGFR39 assay in plasma from 33 patients was 87.88% (29/33, 95% CI 72.67–95.18%). While monitoring the 33 patients, the EGFR mutation load as assessed by dEGFR39 was associated with the objective response to treatment. Thirteen samples from eight patients were identified by dEGFR39 to harbour the T790M mutation over time; of these patients, only nine (69%) were detected using SuperARMS.

Conclusion

Our results indicate that dEGFR39 assay is reliable, sensitive and cost-efficient. This method is beneficial for profiling EGFR mutations for precision therapy and prognosis after TKI treatment, especially in patients with insufficient tissue biopsy samples.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Illustration of dEGFR39 distribution in the three reactions and output data from digital PCR in the form of a 2D histogram.
Fig. 3: The linearity of EGFR L858R, 19Del, and T790M in the dEGFR39 assay.
Fig. 4: Dynamic detection of EGFR mutations in plasma using a dEGFR39 panel.
Fig. 5: The CT images of patient P-23 are shown in a–e.

References

  1. 1.

    Keedy, V. L., Temin, S., Somerfield, M. R., Beasley, M. B., Johnson, D. H., McShane, L. M. et al. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) Mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J. Clin. Oncol. 29, 2121–2127 (2011).

    Article  Google Scholar 

  2. 2.

    Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Cheng, Y., Murakami, H., Yang, P. C., He, J., Nakagawa, K., Kang, J. H. et al. Randomized phase II trial of Gefitinib with and without pemetrexed as first-line therapy in patients with advanced nonsquamous non-small-cell lung cancer with activating epidermal growth factor receptor mutations. J. Clin. Oncol. 34, 3258–3266 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Tiseo, M., Rossi, G., Capelletti, M., Sartori, G., Spiritelli, E., Marchioni, A. et al. Predictors of gefitinib outcomes in advanced non-small cell lung cancer (NSCLC): study of a comprehensive panel of molecular markers. Lung Cancer 67, 355–360 (2010).

    Article  Google Scholar 

  5. 5.

    Fenizia, F., De Luca, A., Pasquale, R., Sacco, A., Forgione, L., Lambiase, M. et al. EGFR mutations in lung cancer: from tissue testing to liquid biopsy. Future Oncol. 11, 1611–1623 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Seki, Y., Fujiwara, Y., Kohno, T., Yoshida, K., Goto, Y., Horinouchi, H. et al. Circulating cell-free plasma tumour DNA shows a higher incidence of EGFR mutations in patients with extrathoracic disease progression. ESMO Open 3, e000292 (2018).

    Article  Google Scholar 

  7. 7.

    Vallee, A., Marcq, M., Bizieux, A., Kouri, C. E., Lacroix, H., Bennouna, J. et al. Plasma is a better source of tumor-derived circulating cell-free DNA than serum for the detection of EGFR alterations in lung tumor patients. Lung Cancer 82, 373–374 (2013).

    Article  Google Scholar 

  8. 8.

    Wang, Z., Cheng, Y., An, T., Gao, H., Wang, K., Zhou, Q. et al. Detection of EGFR mutations in plasma circulating tumour DNA as a selection criterion for first-line gefitinib treatment in patients with advanced lung adenocarcinoma (BENEFIT): a phase 2, single-arm, multicentre clinical trial. Lancet Respir. Med. 6, 681–690 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Zhao, J., Zhao, J., Huang, J., Chen, Y., Jiang, J., Wu, W. et al. A novel method for detection of mutation in epidermal growth factor receptor. Lung Cancer 74, 226–232 (2011).

    Article  Google Scholar 

  10. 10.

    Li, Y., Lv, J., Wan, S., Xin, J., Xie, T., Li, T. et al. High sensitive and non-invasive ctDNAs sequencing facilitate clinical diagnosis and clinical guidance of non-small cell lung cancer patient: a time course study. Front. Oncol. 8, 491 (2018).

    Article  Google Scholar 

  11. 11.

    Li, X., Liu, Y., Shi, W., Xu, H., Hu, H., Dong, Z. et al. Droplet digital PCR improved the EGFR mutation diagnosis with pleural fluid samples in non-small-cell lung cancer patients. Clin. Chim. Acta 471, 177–184 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Jiang, X. W., Liu, W., Zhu, X. Y. & Xu, X. X. Evaluation of EGFR mutations in NSCLC with highly sensitive droplet digital PCR assays. Mol. Med. Rep. 20, 593–603 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Feng, W. N., Gu, W. Q., Zhao, N., Pan, Y. M., Luo, W., Zhang, H. et al. Comparison of the superARMS and droplet digital PCR for detecting EGFR mutation in ctDNA from NSCLC patients. Transl. Oncol. 11, 542–545 (2018).

    Article  Google Scholar 

  14. 14.

    Wang, L., Guo, Q., Yu, W., Qiao, L., Zhao, M., Zhang, C. et al. Quantification of plasma EGFR mutations in patients with lung cancers: Comparison of the performance of ARMS-Plus and droplet digital PCR. Lung Cancer 114, 31–37 (2017).

    Article  Google Scholar 

  15. 15.

    Sacher, A. G., Paweletz, C., Dahlberg, S. E., Alden, R. S., O’Connell, A., Feeney, N. et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. 2, 1014–1022 (2016).

    Article  Google Scholar 

  16. 16.

    Zhang, X., Chang, N., Yang, G., Zhang, Y., Ye, M., Cao, J. et al. A comparison of ARMS-Plus and droplet digital PCR for detecting EGFR activating mutations in plasma. Oncotarget 8, 112014–112023 (2017).

    Article  Google Scholar 

  17. 17.

    Quan, P. L., Sauzade, M. & Brouzes, E. dPCR: a technology review. Sensors 18, 1271 (2018).

    Article  Google Scholar 

  18. 18.

    Perkins, G., Lu, H., Garlan, F. & Taly, V. Droplet-based digital PCR: application in cancer research. Adv. Clin. Chem. 79, 43–91 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Armbruster, D. A. & Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29, 49–52 (2008).

    Google Scholar 

  20. 20.

    Milosevic, D., Mills, J. R., Campion, M. B., Vidal-Folch, N., Voss, J. S., Halling, K. C. et al. Applying standard clinical chemistry assay validation to droplet digital PCR quantitative liquid biopsy testing. Clin. Chem. 64, 1732–1742 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Oxnard, G. R., Hu, Y., Mileham, K. F., Husain, H., Costa, D. B., Tracy, P. et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 4, 1527–1534 (2018).

    Article  Google Scholar 

  22. 22.

    Hofman, V. & Hofman, P. Resistances to EGFR tyrosine kinase inhibitors in lung cancer-how to routinely track them in a molecular pathology laboratory? J. Thorac. Dis. 11, 65–70 (2019).

    Article  Google Scholar 

  23. 23.

    Oscorbin, I. P., Shadrina, A. S., Kozlov, V. V., Voitsitsky, V. E. & Filipenko, M. L. Absence of EGFR C797S mutation in tyrosine kinase inhibitor-naive non-small cell lung cancer tissues. Pathol. Oncol. Res. 26, 1229–1234 (2020).

    CAS  Article  Google Scholar 

  24. 24.

    Morgillo, F., Della Corte, C. M., Fasano, M. & Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open 1, e000060 (2016).

    Article  Google Scholar 

  25. 25.

    Su, K. Y., Chen, H. Y., Li, K. C., Kuo, M. L., Yang, J. C., Chan, W. K. et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J. Clin. Oncol. 30, 433–440 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Decraene, C., Silveira, A. B., Bidard, F. C., Vallee, A., Michel, M., Melaabi, S. et al. Multiple hotspot mutations scanning by single droplet digital PCR. Clin. Chem. 64, 317–328 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Taly, V., Pekin, D., Benhaim, L., Kotsopoulos, S. K., Le Corre, D., Li, X. et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin. Chem. 59, 1722–1731 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Whale, A. S., Huggett, J. F. & Tzonev, S. Fundamentals of multiplexing with digital PCR. Biomol. Detect Quantif. 10, 15–23 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Alcaide, M., Yu, S., Bushell, K., Fornika, D., Nielsen, J. S., Nelson, B. H. et al. Multiplex droplet digital PCR quantification of recurrent somatic mutations in diffuse large B-cell and follicular lymphoma. Clin. Chem. 62, 1238–1247 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Yu, Q., Huang, F., Zhang, M., Ji, H., Wu, S., Zhao, Y. et al. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients. Mol. Med. Rep. 16, 1157–1166 (2017).

    Article  Google Scholar 

  31. 31.

    Ishii, H., Azuma, K., Sakai, K., Kawahara, A., Yamada, K., Tokito, T. et al. Digital PCR analysis of plasma cell-free DNA for non-invasive detection of drug resistance mechanisms in EGFR mutant NSCLC: Correlation with paired tumor samples. Oncotarget 6, 30850–30858 (2015).

    Article  Google Scholar 

  32. 32.

    Lee, J. Y., Qing, X., Xiumin, W., Yali, B., Chi, S., Bak, S. H. et al. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02). Oncotarget 7, 6984–6993 (2016).

    Article  Google Scholar 

  33. 33.

    Taniguchi, K., Okami, J., Kodama, K., Higashiyama, M. & Kato, K. Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci. 99, 929–935 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    Lievens, A., Jacchia, S., Kagkli, D., Savini, C. & Querci, M. Measuring digital PCR quality: performance parameters and their optimization. PLoS ONE 11, e0153317 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Gerdes, L., Iwobi, A., Busch, U. & Pecoraro, S. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomol. Detect Quantif. 7, 9–20 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Zhou, Q., Zhang, X. C., Chen, Z. H., Yin, X. L., Yang, J. J., Xu, C. R. et al. Relative abundance of EGFR mutations predicts benefit from gefitinib treatment for advanced non-small-cell lung cancer. J. Clin. Oncol. 29, 3316–3321 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Cui, S., Ye, L., Wang, H., Chu, T., Zhao, Y., Gu, A. et al. Use of superARMS EGFR mutation detection kit to detect EGFR in plasma cell-free DNA of patients with lung adenocarcinoma. Clin. Lung Cancer 19, 313–322 (2018).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Study design: X.S., J.G., L.C. Patient enrolment and patient data collection: X.S., X.L.Z. Performing experiments and data analysis: J.G., X.S., L.C., M.G., X.Y.F., H.H. Manuscript preparation: J.G., X.S., L.C. All authors discussed the results and implications, and critically revised and approved the final manuscript.

Corresponding authors

Correspondence to Xiang Song or Li Chu.

Ethics declarations

Ethics approval and consent to participate

This study was approved (cch-BOC-1800020) by the ethics committee of Cangzhou Central Hospital, Hebei, China, and all patients provided written informed consent. This study was conducted in accordance with the Declaration of Helsinki.

Consent to publish

Not applicable.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

This work was funded by CIP program from Stilla technologies Co., Ltd.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, X., Gong, J., Zhang, X. et al. Plasma-based early screening and monitoring of EGFR mutations in NSCLC patients by a 3-color digital PCR assay. Br J Cancer 123, 1437–1444 (2020). https://doi.org/10.1038/s41416-020-1024-2

Download citation

Search

Quick links