Genetics and Genomics

Longitudinal monitoring of circulating tumour DNA improves prognostication and relapse detection in gastroesophageal adenocarcinoma



Gastroesophageal adenocarcinoma (GOA) has poor clinical outcomes and lacks reliable blood markers. Here we present circulating tumour DNA (ctDNA) as an emerging biomarker.


Forty patients (17 palliative and 23 curative) were followed by serial plasma monitoring. Primary tumour DNA was analysed by targeted next-generation sequencing to identify somatic single-nucleotide variants (SNVs), and Nanostring nCounter® to detect copy number alterations (CNAs). Patient-specific SNVs and CNA amplifications (CNAamp) were analysed in plasma using digital droplet PCR and quantitative PCR, respectively.


Thirty-five patients (13 palliative, 22 curative) had ≥1 SNVs and/or CNAamp detected in primary tumour DNA suitable for tracking in plasma. Eighteen of 35 patients (nine palliative, nine curative) had ≥1 ctDNA-positive plasma sample. Detection of postoperative ctDNA predicted short RFS (190 vs 934 days, HR = 3.7, p = 0.028) and subsequent relapse (PPV for relapse 0.83). High ctDNA levels (>60.5 copies/ml) at diagnosis of metastatic disease predicted poor OS (90 vs 372 days, HR = 11.7 p < 0.001).


Sensitive ctDNA detection allows disease monitoring and prediction of short OS in metastatic patients. Presence of ctDNA postoperatively predicts relapse and defines a ‘molecular relapse’ before overt clinical disease. This lead time defines a potential therapeutic window for additional anticancer therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Consort diagram of patient workflow.
Fig. 2: Oncoprint of gene mutations and copy number changes in 37 GOA tumours.
Fig. 3: Treatment timeline for five palliative patients, showing ctDNA monitoring.
Fig. 4: Consort diagram of the distribution of patients within the curative patient cohort with ctDNA-positive/negative blood samples.
Fig. 5: Survival in patients receiving surgery with curative intent, in days from surgery.
Fig. 6: Overall survival in GOA patients with metastatic disease and a trackable SNV.


  1. 1.

    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Google Scholar 

  2. 2.

    Thrift, A. P. The epidemic of oesophageal carcinoma: where are we now? Cancer Epidemiol. 41, 88–95 (2016).

    PubMed  Google Scholar 

  3. 3.

    Hartgrink, H. H., Jansen, E. P., van Grieken, N. C. & van de Velde, C. J. Gastric cancer. Lancet 374, 477–490 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Cancer Genome Atlas Research N, Analysis Working Group, Asan, U., BCC, Agency, Brigham, Women’s, H., Broad, I. et al. Integrated genomic characterization of oesophageal carcinoma. Nature 541, 169–175 (2017).

    Google Scholar 

  5. 5.

    Cunningham, D., Starling, N., Rao, S., Iveson, T., Nicolson, M., Coxon, F. et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N. Engl. J. Med. 358, 36–46 (2008).

    CAS  PubMed  Google Scholar 

  6. 6.

    Bang, Y. J., Van Cutsem, E., Feyereislova, A., Chung, H. C., Shen, L., Sawaki, A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    CAS  PubMed  Google Scholar 

  7. 7.

    van Hagen, P., Hulshof, M. C., van Lanschot, J. J., Steyerberg, E. W., van Berge Henegouwen, M. I., Wijnhoven, B. P. et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 366, 2074–2084 (2012).

    PubMed  Google Scholar 

  8. 8.

    Cunningham, D., Allum, W. H., Stenning, S. P., Thompson, J. N., Van de Velde, C. J., Nicolson, M. et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 355, 11–20 (2006).

    CAS  PubMed  Google Scholar 

  9. 9.

    Al-Batran, S.-E., Homann, N., Pauligk, C., Goetze, T. O., Meiler, J., Kasper, S. et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 393, 1948–1957 (2019).

    PubMed  Google Scholar 

  10. 10.

    Ychou, M., Boige, V., Pignon, J. P., Conroy, T., Bouche, O., Lebreton, G. et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J. Clin. Oncol. 29, 1715–1721 (2011).

    CAS  PubMed  Google Scholar 

  11. 11.

    Fribbens, C., Garcia Murillas, I., Beaney, M., Hrebien, S., O’Leary, B., Kilburn, L. et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann. Oncol. 29, 145–153 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Diehl, F., Schmidt, K., Choti, M. A., Romans, K., Goodman, S., Li, M. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    CAS  PubMed  Google Scholar 

  13. 13.

    Ni, J., Weng, L., Liu, Y., Sun, Z., Bai, C. & Wang, Y. Dynamic monitoring of EGFR mutations in circulating cell-free DNA for EGFR-mutant metastatic patients with lung cancer: early detection of drug resistance and prognostic significance. Oncol. Lett. 13, 4549–4557 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Dawson, S. J., Tsui, D. W., Murtaza, M., Biggs, H., Rueda, O. M., Chin, S. F. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    CAS  PubMed  Google Scholar 

  15. 15.

    Garcia-Murillas, I., Schiavon, G., Weigelt, B., Ng, C., Hrebien, S., Cutts, R. J. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 7, 302ra133 (2015).

    PubMed  Google Scholar 

  16. 16.

    Abbosh, C., Birkbak, N. J., Wilson, G. A., Jamal-Hanjani, M., Constantin, T., Salari, R. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Pectasides, E., Stachler, M. D., Derks, S., Liu, Y., Maron, S., Islam, M. et al. Genomic heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma. Cancer Discov. 8, 37–48 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Gao, J., Wang, H., Zang, W., Li, B., Rao, G., Li, L. et al. Circulating tumor DNA functions as an alternative for tissue to overcome tumor heterogeneity in advanced gastric cancer. Cancer Sci. 108, 1881–1887 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bedard, P. L., Hansen, A. R., Ratain, M. J. & Siu, L. L. Tumour heterogeneity in the clinic. Nature 501, 355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Dulak, A. M., Stojanov, P., Peng, S., Lawrence, M. S., Fox, C., Stewart, C. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Murugaesu, N., Wilson, G. A., Birkbak, N. J., Watkins, T. B., McGranahan, N., Kumar, S. et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov. 5, 821–831 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kato, S., Okamura, R., Baumgartner, J. M., Patel, H., Leichman, L., Kelly, K. et al. Analysis of circulating tumor DNA and clinical correlates in patients with esophageal, gastroesophageal junction, and gastric adenocarcinoma. Clin. Cancer Res. 24, 6248–6256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pasternack, H., Fassunke, J., Plum, P. S., Chon, S. H., Hescheler, D. A., Gassa, A. et al. Somatic alterations in circulating cell-free DNA of oesophageal carcinoma patients during primary staging are indicative for post-surgical tumour recurrence. Sci. Rep. 8, 14941 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hamakawa, T., Kukita, Y., Kurokawa, Y., Miyazaki, Y., Takahashi, T., Yamasaki, M. et al. Monitoring gastric cancer progression with circulating tumour DNA. Br. J. Cancer 112, 352–356 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shoda, K., Ichikawa, D., Fujita, Y., Masuda, K., Hiramoto, H., Hamada, J. et al. Monitoring the HER2 copy number status in circulating tumor DNA by droplet digital PCR in patients with gastric cancer. Gastric Cancer 20, 126–135 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Maron, S. B., Chase, L. M., Lomnicki, S., Kochanny, S., Moore, K. L., Joshi, S. S. et al. Circulating tumor DNA sequencing analysis of gastroesophageal adenocarcinoma. Clin. Cancer Res. 25, 7098–7112 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Davidson, M., Barber, L. J., Woolston, A., Cafferkey, C., Mansukhani, S., Griffiths, B. et al. Detecting and tracking circulating tumour DNA copy number profiles during first line chemotherapy in oesophagogastric adenocarcinoma. Cancers (Basel) 11, 1-18. (2019).

  28. 28.

    Page, K., Powles, T., Slade, M. J., DEB, M. T., Walker, R. A., Coombes, R. C. et al. The importance of careful blood processing in isolation of cell-free DNA. Ann. N. Y. Acad. Sci. 1075, 313–317 (2006).

    CAS  PubMed  Google Scholar 

  29. 29.

    Page, K., Guttery, D. S., Zahra, N., Primrose, L., Elshaw, S. R., Pringle, J. H. et al. Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS ONE 8, e77963 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Google Scholar 

  31. 31.

    Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Google Scholar 

  33. 33.

    Scientific, T. F. Ion ampliseq designer. (2015).

  34. 34.

    Guttery, D. S., Page, K., Hills, A., Woodley, L., Marchese, S. D., Rghebi, B. et al. Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer. Clin. Chem. 61, 974–982 (2015).

    CAS  PubMed  Google Scholar 

  35. 35.

    Page, K., Hava, N., Ward, B., Brown, J., Guttery, D. S., Ruangpratheep, C. et al. Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br. J. Cancer 104, 1342–1348 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Geiss, G. K., Bumgarner, R. E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D. L. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008).

    CAS  PubMed  Google Scholar 

  37. 37.

    Shaw, J. A., Guttery, D. S., Hills, A., Fernandez-Garcia, D., Page, K., Rosales, B. M. et al. Mutation analysis of cell-free DNA and single circulating tumor cells in metastatic breast cancer patients with high CTC counts. Clin. Cancer Res. 23, 88–96 (2017).

    CAS  PubMed  Google Scholar 

  38. 38.

    Jamal-Hanjani, M., Wilson, G. A., McGranahan, N., Birkbak, N. J., Watkins, T. B. K., Veeriah, S. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Andersen, P. K. & Gill, R. D. Cox’s regression model for counting processes: a large sample study. Ann. Stat. 10, 1100–1120 (1982).

    Google Scholar 

  40. 40.

    Hudecova, I. Digital PCR analysis of circulating nucleic acids. Clin. Biochem. 48, 948–956 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Couto, S. S. The pathologist’s slide reveals more than meets the eye: loss of heterozygosity and cancer biology. Vet. Pathol. 48, 236–244 (2011).

    CAS  PubMed  Google Scholar 

  42. 42.

    Butler, T. M., Johnson-Camacho, K., Peto, M., Wang, N. J., Macey, T. A., Korkola, J. E. et al. Exome sequencing of cell-free DNA from metastatic cancer patients identifies clinically actionable mutations distinct from primary disease. PLoS ONE 10, e0136407 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Toledo, R. A., Garralda, E., Mitsi, M., Pons, T., Monsech, J., Vega, E. et al. Exome sequencing of plasma DNA portrays the mutation landscape of ccolorectal cancer and discovers mutated VEGFR2 receptors as modulators of antiangiogenic therapies. Clin. Cancer Res. 24, 3550–3559 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Wang, Y., Zhao, C., Chang, L., Jia, R., Liu, R., Zhang, Y. et al. Circulating tumor DNA analyses predict progressive disease and indicate trastuzumab-resistant mechanism in advanced gastric cancer. EBioMedicine 43, 261–269 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Iqbal, M., Roberts, A., Starr, J., Mody, K. & Kasi, P. M. Feasibility and clinical value of circulating tumor DNA testing in patients with gastric adenocarcinomas. J. Gastrointest. Oncol. 10, 400–406 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Normando, S. R. C., Delgado, P. O., Rodrigues, A., David Filho, W. J., Fonseca, F. L. A., Cruz, F. et al. Circulating free plasma tumor DNA in patients with advanced gastric cancer receiving systemic chemotherapy. BMC Clin. Pathol. 18, 12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kim, J. Y., Park, D., Son, D. S., Nam, S. J., Kim, S. W., Jung, H. H. et al. Circulating tumor DNA shows variable clonal response of breast cancer during neoadjuvant chemotherapy. Oncotarget 8, 86423–86434 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Riva, F., Bidard, F. C., Houy, A., Saliou, A., Madic, J., Rampanou, A. et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin. Chem. 63, 691–699 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Tie, J., Cohen, J. D., Wang, Y., Li, L., Christie, M., Simons, K. et al. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut 68, 663–671 (2019).

    CAS  PubMed  Google Scholar 

  50. 50. Prediction of the efficacy of ctDNA in immunotherapy for advanced gastric cancer. (2019).

  51. 51. Liquid biopsy in monitoring the neoadjuvant chemotherapy and operation in gastric cancer. (2019).

  52. 52. Radiation therapy for the treatment of metastatic gastrointestinal cancers. (2019).

Download references


We would like to acknowledge K. Kulbicki for help with sample management from the Leicester biobank, and L. Primrose, J. Riley and V. Parmar for assistance with sample processing.

Author information




Study Concepts: M.O., B.O., C.R., A.T. and J.S. Study Design: M.O., B.O., A.T. and J.S. Data acquisition: M.O., A.M., B.O., C.R. and A.T. Quality control of data and algorithms: All. Manuscript preparation: M.O., A.M., D.G., A.T. and J.S. Data analysis and interpretation: All. Statistical analysis: M.O., A.M., B.O., D.G., A.T. and J.S. Manuscript editing: M.O., A.M., D.G., A.T. and J.S. Manuscript Review: All.

Corresponding author

Correspondence to Mark R. Openshaw.

Ethics declarations

Ethics approval and consent to participate

Patients were recruited in accordance with the declaration of Helsinki and consented to sample storage and use at the University of Leicester Cancer Research Biobank, Research and development project number UHL11274. Ethical approval for the project was via the East Midlands Local Research Ethics Committee (REC: 13/EM/0196).

Consent for publication

Consent for publication is included within the ethics approval from the East Midlands Local Research Ethics Committee (REC: 13/EM/0196). All patients consented to the Leicester biobank study UHL11274 consented for use of their data in publication.

Data availability

Data are available in supplementary data files attached. Sequencing data readouts can be requested from the corresponding author.

Competing interests

The authors declare no competing interests.

Funding information

This study was funded by a ‘Hope Against Cancer’, Leicester UK grant [RM60G0494] and in conjunction with the UK Department of Health on an Experimental Cancer Medicine Centre grant [C10604/A25151]. A.A.M., K.P. and D.F.G. are funded by a Cancer Research UK via programme grant to J.A.S. [C63713/A25951]. A.A.M. was also funded by a National Institute for Health Research (NIHR) Academic Clinical Fellowship for this research project.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Openshaw, M.R., Mohamed, A.A., Ottolini, B. et al. Longitudinal monitoring of circulating tumour DNA improves prognostication and relapse detection in gastroesophageal adenocarcinoma. Br J Cancer (2020).

Download citation