Genetics and Genomics

A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency

Abstract

Background

Pretherapeutic screening for dihydropyrimidine dehydrogenase (DPD) deficiency is recommended or required prior to the administration of fluoropyrimidine-based chemotherapy. However, the best strategy to identify DPD-deficient patients remains elusive.

Methods

Among a nationwide cohort of 5886 phenotyped patients with cancer who were screened for DPD deficiency over a 3 years period, we assessed the characteristics of both DPD phenotypes and DPYD genotypes in a subgroup of 3680 patients who had completed the two tests. The extent to which defective allelic variants of DPYD predict DPD activity as estimated by the plasma concentrations of uracil [U] and its product dihydrouracil [UH2] was evaluated.

Results

When [U] was used to monitor DPD activity, 6.8% of the patients were classified as having DPD deficiency ([U] > 16 ng/ml), while the [UH2]:[U] ratio identified 11.5% of the patients as having DPD deficiency (UH2]:[U] < 10). [U] classified two patients (0.05%) with complete DPD deficiency (> 150 ng/ml), and [UH2]:[U] < 1 identified three patients (0.08%) with a complete DPD deficiency. A defective DPYD variant was present in 4.5% of the patients, and two patients (0.05%) carrying 2 defective variants of DPYD were predicted to have low metabolism. The mutation status of DPYD displayed a very low positive predictive value in identifying individuals with DPD deficiency, although a higher predictive value was observed when [UH2]:[U] was used to measure DPD activity. Whole exon sequencing of the DPYD gene in 111 patients with DPD deficiency and a “wild-type” genotype (based on the four most common variants) identified seven heterozygous carriers of a defective allelic variant.

Conclusions

Frequent genetic DPYD variants have low performances in predicting partial DPD deficiency when evaluated by [U] alone, and [UH2]:[U] might better reflect the impact of genetic variants on DPD activity. A clinical trial comparing toxicity rates after dose adjustment according to the results of genotyping or phenotyping testing to detect DPD deficiency will provide critical information on the best strategy to identify DPD deficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characteristics of DPD activity.
Fig. 2: Distribution of [U] values according to the mutation status of the patients.

References

  1. 1.

    Meulendijks, D., Henricks, L. M., Jacobs, B. A. W., Aliev, A., Deenen, M. J., de Vries, N. et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br. J. Cancer 116, 1415–1424 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Andre, T., Colin, P., Louvet, C., Gamelin, E., Bouche, O., Achille, E. et al. Semimonthly versus monthly regimen of fluorouracil and leucovorin administered for 24 or 36 weeks as adjuvant therapy in stage II and III colon cancer: results of a randomized trial. J. Clin. Oncol. 21, 2896–2903 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    Mikhail, S. E., Sun, J. F. & Marshall, J. L. Safety of capecitabine: a review. Expert Opin. Drug Saf. 9, 831–841 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Barin-Le Guellec, C., Lafay-Chebassier, C., Ingrand, I., Tournamille, J. F., Boudet, A., Lanoue, M. C. et al. Toxicities associated with chemotherapy regimens containing a fluoropyrimidine: a real-life evaluation in France. Eur. J. Cancer 124, 37–46 (2020).

    CAS  Article  Google Scholar 

  5. 5.

    van Kuilenburg, A. B. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur. J. Cancer 40, 939–950 (2004).

    Article  Google Scholar 

  6. 6.

    Amstutz, U., Henricks, L. M., Offer, S. M., Barbarino, J., Schellens, J. H. M., Swen, J. J. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin. Pharm. Ther. 103, 210–216 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Etienne-Grimaldi, M. C., Boyer, J. C., Beroud, C., Mbatchi, L., van Kuilenburg, A., Bobin-Dubigeon, C. et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS ONE 12, e0175998 (2017).

    Article  Google Scholar 

  8. 8.

    Toffoli, G., Giodini, L., Buonadonna, A., Berretta, M., De Paoli, A., Scalone, S. et al. Clinical validity of a DPYD-based pharmacogenetic test to predict severe toxicity to fluoropyrimidines. Int J. Cancer 137, 2971–2980 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Terrazzino, S., Cargnin, S., Del Re, M., Danesi, R., Canonico, P. L. & Genazzani, A. A. DPYD IVS14+1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta-analysis. Pharmacogenomics 14, 1255–1272 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Henricks, L. M., Lunenburg, C., de Man, F. M., Meulendijks, D., Frederix, G. W. J., Kienhuis, E. et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 19, 1459–1467 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Meulendijks, D., Henricks, L. M., Sonke, G. S., Deenen, M. J., Froehlich, T. K., Amstutz, U. et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 16, 1639–1650 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Swen, J. J., Nijenhuis, M., de Boer, A., Grandia, L., Maitland-van der Zee, A. H., Mulder, H. et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin. Pharm. Ther. 89, 662–673 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Sistonen, J., Buchel, B., Froehlich, T. K., Kummer, D., Fontana, S., Joerger, M. et al. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio. Pharmacogenomics 15, 1653–1666 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Boisdron-Celle, M., Remaud, G., Traore, S., Poirier, A. L., Gamelin, L., Morel, A. et al. 5-Fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett. 249, 271–282 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    Boisdron-Celle, M., Capitain, O., Faroux, R., Borg, C., Metges, J. P., Galais, M. P. et al. Prevention of 5-fluorouracil-induced early severe toxicity by pre-therapeutic dihydropyrimidine dehydrogenase deficiency screening: Assessment of a multiparametric approach. Semin Oncol. 44, 13–23 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    van Kuilenburg, A. B., Haasjes, J., Richel, D. J., Zoetekouw, L., Van Lenthe, H., De Abreu, R. A. et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin. Cancer Res. 6, 4705–4712 (2000).

    PubMed  Google Scholar 

  17. 17.

    Launay, M., Ciccolini, J., Fournel, C., Blanquicett, C., Dupuis, C., Fakhry, N. et al. Upfront Dpd deficiency detection to secure 5-Fu administration: part 2- application to head-and-neck cancer patients. Clin. Cancer Drugs 4, 122–128 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Launay, M., Dahan, L., Duval, M., Rodallec, A., Milano, G., Duluc, M. et al. Beating the odds: efficacy and toxicity of dihydropyrimidine dehydrogenase-driven adaptive dosing of 5-FU in patients with digestive cancer. Br. J. Clin. Pharm. 81, 124–130 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Yang, C. G., Ciccolini, J., Blesius, A., Dahan, L., Bagarry-Liegey, D., Brunet, C. et al. DPD-based adaptive dosing of 5-FU in patients with head and neck cancer: impact on treatment efficacy and toxicity. Cancer Chemother. Pharm. 67, 49–56 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Jacobs, B. A., Rosing, H., de Vries, N., Meulendijks, D., Henricks, L. M., Schellens, J. H. et al. Development and validation of a rapid and sensitive UPLC-MS/MS method for determination of uracil and dihydrouracil in human plasma. J. Pharm. Biomed. Anal. 126, 75–82 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Coudore, F., Roche, D., Lefeuvre, S., Faussot, D., Billaud, E. M., Loriot, M. A. et al. Validation of an ultra-high performance liquid chromatography tandem mass spectrometric method for quantifying uracil and 5,6-dihydrouracil in human plasma. J. Chromatogr. Sci. 50, 877–884 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Loriot, M. A., Ciccolini, J., Thomas, F., Barin-Le-Guellec, C., Royer, B., Milano, G. et al. [Dihydropyrimidine dehydrogenase (DPD) deficiency screening and securing of fluoropyrimidine-based chemotherapies: update and recommendations of the French GPCO-Unicancer and RNPGx networks]. Bull. Cancer. 105, 397–407 (2018) .

  23. 23.

    Gamelin, E., Boisdron-Celle, M., Guerin-Meyer, V., Delva, R., Lortholary, A., Genevieve, F. et al. Correlation between uracil and dihydrouracil plasma ratio, fluorouracil (5-FU) pharmacokinetic parameters, and tolerance in patients with advanced colorectal cancer: A potential interest for predicting 5-FU toxicity and determining optimal 5-FU dosage. J. Clin. Oncol. 17, 1105 (1999).

    CAS  Article  Google Scholar 

  24. 24.

    Neto, O. V., Raymundo, S., Franzoi, M. A., do Carmo Artmann, A., Tegner, M., Muller, V. V. et al. DPD functional tests in plasma, fresh saliva and dried saliva samples as predictors of 5-fluorouracil exposure and occurrence of drug-related severe toxicity. Clin. Biochem. 56, 18–25 (2018).

    Article  Google Scholar 

  25. 25.

    Meulendijks, D., Cats, A., Beijnen, J. H. & Schellens, J. H. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity—ready for clinical practice? Cancer Treat. Rev. 50, 23–34 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Etienne-Grimaldi, M. C., Le Guellec, C. B., Boyer, J. C., Chatelut, E., Evrard, A., Loriot, M. A. et al. Prevention of 5-fluorouracil-induced early severe toxicity by pre-therapeutic dihydropyrimidine dehydrogenase deficiency screening: The multiparametric approach is not convincing. Semin Oncol. 44, 159–160 (2017).

    Article  Google Scholar 

  27. 27.

    Galarza, A. F., Linden, R., Antunes, M. V., Hahn, R. Z., Raymundo, S., da Silva, A. C. et al. Endogenous plasma and salivary uracil to dihydrouracil ratios and DPYD genotyping as predictors of severe fluoropyrimidine toxicity in patients with gastrointestinal malignancies. Clin. Biochem. 49, 1221–1226 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Botticelli, A., Borro, M., Onesti, C. E., Strigari, L., Gentile, G., Cerbelli, B. et al. Degradation rate of 5-Fluorouracil in metastatic colorectal cancer: a new predictive outcome biomarker? PLoS ONE 11, e0163105 (2016).

    Article  Google Scholar 

  29. 29.

    Saam, J., Critchfield, G. C., Hamilton, S. A., Roa, B. B., Wenstrup, R. J. & Kaldate, R. R. Body surface area-based dosing of 5-fluoruracil results in extensive interindividual variability in 5-fluorouracil exposure in colorectal cancer patients on FOLFOX regimens. Clin. Colorectal Cancer 10, 203–206 (2011).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

N.P. and M.-A.L. had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. C.N. and M.-A.L. contributed equally. Study concept and design: NP and MAL. Acquisition, analysis, or interpretation of data: N.P., S.H., S.G., H.B., E.P., J.T., O.L., A.Z., M-A.L., C.N. Drafting of the paper: N.P and M.-A.L. Critical revision of the paper for important intellectual content: N.P., S.G., E.P., J.T., A.Z., M.-A.L., C.N., N.P. Statistical analysis: N.P. and M-A.L. Administrative, technical, or material support: N.P., M.-A.L., C.N. Study supervision: N.P. and M.-A.L.

Corresponding author

Correspondence to Nicolas Pallet.

Ethics declarations

Ethics approval and consent to participate

This study received approval (N° 00011928) from the hospital institutional review board (CERAPHP.5). All patients provided written informed consent for study participation and for genetic analyses prior to inclusion. The study has been performed in accordance with the Declaration of Helsinki.

Data availability

Data supporting the results reported in the article can be obtained upon request to the corresponding author.

Competing interests

The authors declare no competing interests.

Funding information

French National Cancer Institute (Institut National du Cancer, INCa) and Canceropôle Ile de France have provided financial support for this work, none of which has any role in the design and conduct of the study, the collection, management, analysis, and interpretation of data, the preparation, review and approval of the paper or the decision to submit the paper for publication.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pallet, N., Hamdane, S., Garinet, S. et al. A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency. Br J Cancer (2020). https://doi.org/10.1038/s41416-020-0962-z

Download citation