Translational Therapeutics

Reversal of glucocorticoid resistance in paediatric acute lymphoblastic leukaemia is dependent on restoring BIM expression



Acute lymphoblastic leukaemia (ALL) is the most common paediatric malignancy. Glucocorticoids form a critical component of chemotherapy regimens and resistance to glucocorticoid therapy is predictive of poor outcome. We have previously shown that glucocorticoid resistance is associated with upregulation of the oncogene C-MYC and failure to induce the proapoptotic gene BIM.


A high-throughput screening (HTS) campaign was carried out to identify glucocorticoid sensitisers against an ALL xenograft derived from a glucocorticoid-resistant paediatric patient. Gene expression analysis was carried out using Illumina microarrays. Efficacy, messenger RNA and protein analysis were carried out by Resazurin assay, reverse transcription-PCR and immunoblotting, respectively.


A novel glucocorticoid sensitiser, 2-((4,5-dihydro-1H-imidazol-2-yl)thio)-N-isopropyl-N-phenylacetamide (GCS-3), was identified from the HTS campaign. The sensitising effect was specific to glucocorticoids and synergy was observed in a range of dexamethasone-resistant and dexamethasone-sensitive xenografts representative of B-ALL, T-ALL and Philadelphia chromosome-positive ALL. GCS-3 in combination with dexamethasone downregulated C-MYC and significantly upregulated BIM expression in a glucocorticoid-resistant ALL xenograft. The GCS-3/dexamethasone combination significantly increased binding of the glucocorticoid receptor to a novel BIM enhancer, which is associated with glucocorticoid sensitivity.


This study describes the potential of the novel glucocorticoid sensitiser, GCS-3, as a biological tool to interrogate glucocorticoid action and resistance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ex vivo efficacy of GCS-3 in combination with dexamethasone or prednisolone against ALL-19 xenograft cells.
Fig. 2: Ex vivo efficacy of GCS-3 in combination with dexamethasone against ALL xenograft cells.
Fig. 3: GCS-3 requires a functional GR to induce caspase-dependent apoptosis.
Fig. 4: Effects of GCS-3 on dexamethasone-induced gene expression changes.
Fig. 5: Expression levels of candidate genes in ALL-19 cells.
Fig. 6: BIM upregulation correlates with GCS-3/dexamethasone efficacy.


  1. 1.

    Pui, C.-H., Yang, J. J., Bhakta, N. & Rodriguez-Galindo, C. Global efforts toward the cure of childhood acute lymphoblastic leukaemia. Lancet Child Adolesc. Health 2, 440–454 (2018).

  2. 2.

    Pui, C.-H., Yang, J. J., Hunger, S. P., Pieters, R., Schrappe, M., Biondi, A. et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J. Clin. Oncol. 33, 2938–2948 (2015).

  3. 3.

    Burke, W. & Thummel, K. Precision medicine and health disparities: the case of pediatric acute lymphoblastic leukemia. Nurs. Outlook 67, 331–336 (2019).

  4. 4.

    Youlden, D. R., Gupta, S., Frazier, A. L., Moore, A. S., Baade, P. D., Valery, P. C. et al. Stage at diagnosis for children with blood cancers in Australia: application of the Toronto Paediatric Cancer Stage Guidelines in a population-based national childhood cancer registry. Pediatr. Blood Cancer 66, e27683 (2019).

  5. 5.

    Bhojwani, D. & Pui, C.-H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 14, 205–217 (2013).

  6. 6.

    Pui, C.-H., Pappo, A., Gajjar, A. & Downing, J. R. Redefining “rare” in paediatric cancers. Lancet Oncol. 17, 138–139 (2016).

  7. 7.

    Oskarsson, T., Söderhäll, S., Arvidson, J., Forestier, E., Montgomery, S., Bottai, M. et al. Relapsed childhood acute lymphoblastic leukemia in the Nordic countries: prognostic factors, treatment and outcome. Haematologica 101, 68–76 (2016).

  8. 8.

    Widjajanto, P. H., Sutaryo, S., Purwanto, I., Ven, P. M. V. & Veerman, A. J. P. Early response to dexamethasone as prognostic factor: result from Indonesian childhood WK-ALL protocol in Yogyakarta. J. Oncol. 2012, 417941–417949 (2012).

  9. 9.

    Gao, J. & Liu, W.-J. Prognostic value of the response to prednisone for children with acute lymphoblastic leukemia: a meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 22, 7858–7866 (2018).

  10. 10.

    Jeha, S., Pei, D., Choi, J., Cheng, C., Sandlund, J. T., Coustan-Smith, E. et al. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total Therapy Study 16. J. Clin. Oncol. 37, 3377–3391 (2019).

  11. 11.

    Heikamp, E. B. & Pui, C.-H. Next-generation evaluation and treatment of pediatric acute lymphoblastic leukemia. J. Pediatr. 203, 14–24 (2018).

  12. 12.

    Gaipa, G., Basso, G., Biondi, A. & Campana, D. Detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Cytom. Part B 84, 359–369 (2013).

  13. 13.

    Chougule, R. A., Shah, K., Moharram, S. A., Vallon-Christersson, J. & Kazi, J. U. Glucocorticoid-resistant B cell acute lymphoblastic leukemia displays receptor tyrosine kinase activation. NPJ Genom. Med. 4, 7–16 (2019).

  14. 14.

    Klumper, E., Pieters, R., Veerman, A., Huismans, D., Loonen, A., Hahlen, K. et al. In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 86, 3861–3868 (1995).

  15. 15.

    Lin, K.-T. & Wang, L.-H. New dimension of glucocorticoids in cancer treatment. Steroids 111, 84–88 (2016).

  16. 16.

    Scheijen, B. Molecular mechanisms contributing to glucocorticoid resistance in lymphoid malignancies. Cancer Drug Resist. 2, 647–664 (2019).

  17. 17.

    Bachmann, P. S., Gorman, R., MacKenzie, K. L., Lutze-Mann, L. & Lock, R. B. Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood 105, 2519–2526 (2005).

  18. 18.

    Bachmann, P. S., Gorman, R., Papa, R. A., Bardell, J. E., Ford, J., Kees, U. R. et al. Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia. Cancer Res. 67, 4482–4490 (2007).

  19. 19.

    Bachmann, P. S., Piazza, R. G., Janes, M. E., Wong, N. C., Davies, C., Mogavero, A. et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 116, 3013–3022 (2010).

  20. 20.

    Jing, D., Bhadri, V. A., Beck, D., Thoms, J. A. I., Yakob, N. A., Wong, J. W. H. et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood 125, 273–283 (2015).

  21. 21.

    Jing, D., Huang, Y., Liu, X., Sia, K. C. S., Zhang, J. C., Tai, X. et al. Lymphocyte-specific chromatin accessibility pre-determines glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Cell. 34, 906–921 (2018).

  22. 22.

    Bhadri, V. A., Cowley, M. J., Kaplan, W., Trahair, T. N. & Lock, R. B. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia. BioMed. Cent. Genomics 12, 565 (2011).

  23. 23.

    Toscan, C. E., Failes, T., Arndt, G. M. & Lock, R. B. High-throughput screening of human leukemia xenografts to identify dexamethasone sensitizers. J. Biomol. Screen. 19, 1391–1401 (2014).

  24. 24.

    Liem, N. L. M., Papa, R. A., Milross, C. G., Schmid, M. A., Tajbakhsh, M., Choi, S. et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 103, 3905–3914 (2004).

  25. 25.

    Lock, R. B., Liem, N., Farnsworth, M. L., Milross, C. G., Xue, C., Tajbakhsh, M. et al. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood 99, 4100–4108 (2002).

  26. 26.

    Toscan, C. E., Rahimi, M., Bhadbhade, M., Pickford, R., McAlpine, S. R. & Lock, R. B. Thioimidazoline based compounds reverse glucocorticoid resistance in human acute lymphoblastic leukemia xenografts. Org. Biomol. Chem. 13, 6299–6312 (2015).

  27. 27.

    El-Hoss, J., Jing, D., Evans, K., Toscan, C., Xie, J., Lee, H. et al. A single nucleotide polymorphism genotyping platform for the authentication of patient derived xenografts. Oncotarget 7, 60475–60490 (2016).

  28. 28.

    Tursky, M. L., Beck, D., Thoms, J. A. I., Huang, Y., Kumari, A., Unnikrishnan, A. et al. Overexpression of ERG in cord blood progenitors promotes expansion and recapitulates molecular signatures of high ERG leukemias. Leukemia 29, 819–827 (2015).

  29. 29.

    Bliss, C. I. & Bartels, B. L. The determination of the most efficient response for measuring drug potency. Fed. Proc. 5, 167 (1946).

  30. 30.

    Inaba, H. & Pui, C.-H. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 11, 1096–1106 (2010).

  31. 31.

    Kuzelova, K., Grebenová, D. & Brodská, B. Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes. J. Cell. Biochem. 112, 3334–3342 (2011).

  32. 32.

    Rhein, P., Scheid, S., Ratei, R., Hagemeier, C., Seeger, K., Kirschner-Schwabe, R. et al. Gene expression shift towards normal B cells, decreased proliferative capacity and distinct surface receptors characterize leukemic blasts persisting during induction therapy in childhood acute lymphoblastic leukemia. Leukemia 21, 897–905 (2007).

  33. 33.

    Yan, M., Kuang, X., Scofield, V. L., Shen, J., Lynn, W. S. & Wong, P. K. Y. The glucorcorticoid receptor is increased in Atm−/− thymocytes and in Atm−/− thymic lymphoma cells, and its nuclear translocation counteracts c-myc expression. Steroids 72, 415–421 (2007).

  34. 34.

    Jones, C. L., Bhatla, T., Blum, R., Wang, J., Paugh, S. W., Wen, X. et al. Loss of TBL1XR1 disrupts glucocorticoid receptor recruitment to chromatin and results in glucocorticoid resistance in a B-lymphoblastic leukemia model. J. Biol. Chem. 289, 20502–20515 (2014).

  35. 35.

    Bornhauser, B. C., Bonapace, L., Lindholm, D., Martinez, R., Cario, G., Schrappe, M. et al. Low-dose arsenic trioxide sensitizes glucocorticoid-resistant acute lymphoblastic leukemia cells to dexamethasone via an Akt-dependent pathway. Blood 110, 2084–2091 (2007).

  36. 36.

    Piovan, E., Yu, J., Tosello, V., Herranz, D., Ambesi-Impiombato, A., Da Silva, A. C. et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell 24, 766–776 (2013).

  37. 37.

    Silveira, A. B., Laranjeira, A. B. A., Rodrigues, G. O. L., Leal, R., Cardoso, B. A., Barata, J. T. et al. PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia. Oncotarget 6, 13105–13118 (2015).

  38. 38.

    Hall, C. P., Reynolds, C. P. & Kang M. H. Modulation of glucocorticoid resistance in pediatric T-cell acute lymphoblastic leukemia by increasing BIM expression with the PI3K/mTOR inhibitor BEZ235. Clin. Cancer Res. 22, 621–632 (2016).

  39. 39.

    Wei, G., Twomey, D., Lamb, J., Schlis, K., Agarwal, J., Stam, R. W. et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10, 331–342 (2006).

  40. 40.

    Zhang, C., Ryu, Y.-K., Chen, T. Z., Hall, C. P., Webster, D. R. & Kang, M. H. Synergistic activity of rapamycin and dexamethasone in vitro and in vivo in acute lymphoblastic leukemia via cell-cycle arrest and apoptosis. Leuk. Res. 36, 342–349 (2012).

  41. 41.

    Nguyen, M., Marcellus, R. C., Roulston, A., Watson, M., Serfass, L., Murthy Madiraju, S. R. et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl Acad. Sci. USA 104, 19512–19517 (2007).

  42. 42.

    Heidari, N., Hicks, M. A. & Harada, H. GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy. Cell Death Dis. 1, 76 (2010).

  43. 43.

    Bonapace, L., Bornhauser, B. C., Schmitz, M., Cario, G., Ziegler, U., Niggli, F. K. et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J. Clin. Invest. 120, 1310–1323 (2010).

  44. 44.

    Real, P. J., Tosello, V., Palomero, T., Castillo, M., Hernando, E., de Stanchina, E. et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat. Med. 15, 50–58 (2009).

  45. 45.

    Hulleman, E., Kazemier, K. M., Holleman, A., VanderWeele, D. J., Rudin, C. M., Broekhuis, M. J. C. et al. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 113, 2014–2021 (2009).

  46. 46.

    Eberhart, K., Renner, K., Ritter, I., Kastenberger, M., Singer, K., Hellerbrand, C. et al. Low doses of 2-deoxy-glucose sensitize acute lymphoblastic leukemia cells to glucocorticoid-induced apoptosis. Leukemia 23, 2167–2170 (2009).

  47. 47.

    Samuels, A. L., Heng, J. Y., Beesley, A. H. & Kees, U. R. Bioenergetic modulation overcomes glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia. Br. J. Haematol. 165, 57–66 (2014).

  48. 48.

    Cantley, A. M., Welsch, M., Ambesi-Impiombato, A., Sanchez-Martin, M., Kim, M.-Y., Bauer, A. et al. Small molecule that reverses dexamethasone resistance in T-cell acute lymphoblastic leukemia (T-ALL). ACS Medicinal Chem. Lett. 5, 754–759 (2014).

  49. 49.

    Neale, G., Su, X., Morton, C. L., Phelps, D., Gorlick, R., Lock, R. B. et al. Molecular characterization of the Pediatric Preclinical Testing Panel. Clin. Cancer Res. 14, 4572–4583 (2008).

  50. 50.

    Danilczuk, Z., Ossowska, G., Lupina, T., Cieślik, K. & Zebrowska-Lupina, I. Effect of NMDA receptor antagonists on behavioral impairment induced by chronic treatment with dexamethasone. Pharmacol. Rep. 57, 47–54 (2005).

  51. 51.

    Mitchell, C. D., Richards, S. M., Kinsey, S. E., Lilleyman, J., Vora, A. & Eden, T. O. B. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br. J. Haematol. 129, 734–745 (2005).

  52. 52.

    Silverman, L. B., Gelber, R. D., Dalton, V. K., Asselin, B. L., Barr, R. D., Clavell, L. A. et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 97, 1211–1218 (2001).

  53. 53.

    Strauss, A. J., Su, J. T., Kimball Dalton, V. M., Gelber, R. D., Sallan, S. E. & Silverman, L. B. Bony morbidity in children treated for acute lymphoblastic leukemia. J. Clin. Oncol. 19, 3066–3072 (2001).

  54. 54.

    Wolkowitz, O. M. Prospective controlled studies of the behavioral and biological effects of exogenous corticosteroids. Psychoneuroendocrinology 19, 233–255 (1994).

  55. 55.

    Wang, Z., Malone, M. H., He, H., McColl, K. S. & Distelhorst, C. W. Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J. Biol. Chem. 278, 23861–23867 (2003).

  56. 56.

    Schmidt, S., Rainer, J., Riml, S., Ploner, C., Jesacher, S., Achmüller, C. et al. Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood 107, 2061–2069 (2006).

  57. 57.

    Beesley, A. H., Firth, M. J., Ford, J., Weller, R. E., Freitas, J. R., Perera, K. U. et al. Glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia is associated with a proliferative metabolism. Br. J. Cancer 100, 1926–1936 (2009).

  58. 58.

    Thulasi, R., Harbour, D. V. & Thompson, E. B. Suppression of c-myc is a critical step in glucocorticoid-induced human leukemic cell lysis. J. Biol. Chem. 268, 18306–18312 (1993).

  59. 59.

    Medh, R. D., Webb, M. S., Miller, A. L., Johnson, B. H., Fofanov, Y., Li, T. et al. Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics 81, 543–555 (2003).

  60. 60.

    Planey, S. L., Abrams, M. T., Robertson, N. M. & Litwack, G. Role of apical caspases and glucocorticoid-regulated genes in glucocorticoid-induced apoptosis of Pre-B leukemic cells. Cancer Res. 63, 172–178 (2003).

  61. 61.

    Wei-Chen Chen, D., Lynch, J. T., Demonacos, C., Krstic-Demonacos, M. & Schwartz, J.-M. Quantitative analysis and modeling of glucocorticoid-controlled gene expression. Pharmacogenomics 11, 1545–1560 (2010).

  62. 62.

    Reynolds, C., Roderick, J., Labelle, J., Bird, G., Mathieu, R., Bodaar, K. et al. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia. Leukemia 28, 1819–1827 (2014).

  63. 63.

    Wirth, M., Stojanovic, N., Christian, J., Paul, M. C., Stauber, R. H., Schmid, R. M. et al. MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res. 42, 10433–10447 (2014).

  64. 64.

    Yun, S., Vincelette, N. D., Knorr, K. L. B., Almada, L. L., Schneider, P. A., Peterson, K. L. et al. 4EBP1/c-MYC/PUMA and NF-κB/EGR1/BIM pathways underlie cytotoxicity of mTOR dual inhibitors in malignant lymphoid cells. Blood 127, 2711–2722 (2016).

Download references


We thank Professor John E. Pimanda for kindly providing CD34+ cells from human cord blood and Dr. Julie A.I. Thoms for technical support. We also thank donors and staff from the Sydney Cord Blood Bank for supplying cord bloods. Children’s Cancer Institute is affiliated with UNSW Sydney and the Sydney Children’s Hospitals Network.

Author information




C.E.T. and R.B.L. designed the study; C.E.T., D.J. and C.M. generated and analysed the data; C.E.T. and R.B.L. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Richard B. Lock.

Ethics declarations

Ethics approval and consent to participate

All samples used in this manuscript were either purchased, established cell lines or patient-derived xenografts (passage ≥ 2) that had previously been established with appropriate informed consent. All patient-derived xenografts were previously established under approval of the University of New South Wales Animal Care and Ethics Committee. Cord blood was obtained from the Sydney Cord Blood Bank under approval of the Prince of Wales Hospital (Reference number HREC 08/190). All donors consent to their sample being used for research and the Sydney Cord Blood Bank is licensed by the Therapeutic Goods Administration and accredited by the Foundation for Accreditation of Cellular Therapy. The study was performed in accordance with the Declaration of Helsinki.

Consent to publish

This manuscript does not contain any individual person’s data in any form.

Data availability

All data generated or analysed during this study are included in this manuscript. Supplementary information is available at the British Journal of Cancer website.

Competing interests

The authors declare no competing interests.

Funding information

This research was supported through the Priority-driven Collaborative Cancer Research Scheme and co-funded by Cancer Australia and The Kids’ Cancer Project (Grant APP1129129). This research was also funded by the Anthony Rothe Memorial Trust, the National Health and Medical Research Council of Australia (NHMRC Fellowships APP1059804 and APP1157871 to RBL) and the Cancer Institute NSW (Early Career Fellowship 15/ECF/1-02 to D.J.). C.E.T. was funded by a Research Excellence Award from UNSW Sydney.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toscan, C.E., Jing, D., Mayoh, C. et al. Reversal of glucocorticoid resistance in paediatric acute lymphoblastic leukaemia is dependent on restoring BIM expression. Br J Cancer (2020).

Download citation