Cancer Metabolism

Window of opportunity clinical trial designs to study cancer metabolism

Abstract

Window of opportunity trials exploit the ‘window’ of time after cancer diagnosis, typically prior to initiation of cancer therapy. In recent years this study design has become a more regular feature of drug development, as this ‘window’ provides an opportunity to carry out a thorough pharmacodynamic assessment of a therapy of interest in tumours that are unperturbed by prior treatment. Many of the first window trials interrogated the bioactivity of drugs being repurposed for cancer treatment, in particular the anti-mitochondrial agent, metformin. In this review, we describe examples of window study designs that have been used to assess drugs that target cancer metabolism with a focus on metformin. In addition, we discuss how window studies may aid the development of molecular metabolic cancer imaging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Ashton, T. M., McKenna, W. G., Kunz-Schughart, L. A., Higgins, G. S. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 24, 2482–2490 (2018). e-pub ahead of print 2018/02/09.

  2. 2.

    Tabernero, J., Rojo, F., Calvo, E., Burris, H., Judson, I., Hazell, K. et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J. Clin. Oncol. 26, 1603–1610 (2008). e-pub ahead of print 2008/03/12.

  3. 3.

    Stein, E. M., DiNardo, C. D., Pollyea, D. A., Fathi, A. T., Roboz, G. J., Altman, J. K. et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130, 722–731 (2017). e-pub ahead of print 2017/06/08.

  4. 4.

    Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 e359 (2017). e-pub ahead of print 2017/10/07.

  5. 5.

    Fan, T. W., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M. et al. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol. Cancer 8, 41 (2009). e-pub ahead of print 2009/06/30.

  6. 6.

    Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016). e-pub ahead of print 2016/02/09.

  7. 7.

    van Asselt, S. J., Oosting, S. F., Brouwers, A. H., Bongaerts, A. H., de Jong, J. R., Lub-de Hooge, M. N. et al. Everolimus reduces (89)Zr-Bevacizumab tumor uptake in patients with neuroendocrine tumors. J. Nucl. Med. 55, 1087–1092 (2014). e-pub ahead of print 2014/05/03.

  8. 8.

    van Kruchten, M., Glaudemans, A., de Vries, E. F. J., Schroder, C. P., de Vries, E. G. E. & Hospers, G. A. P. Positron emission tomography of tumour [(18)F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy. Eur. J. Nucl. Med. Mol. Imaging 42, 1674–1681 (2015). e-pub ahead of print 2015/06/21.

  9. 9.

    Linden, H. M., Stekhova, S. A., Link, J. M., Gralow, J. R., Livingston, R. B., Ellis, G. K. et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J. Clin. Oncol. 24, 2793–2799 (2006). e-pub ahead of print 2006/05/10.

  10. 10.

    Lord, S. R., Cheng, W. C., Liu, D., Gaude, E., Haider, S., Metcalf, T. et al. Integrated pharmacodynamic analysis identifies two metabolic adaption pathways to metformin in breast cancer. Cell Metab. 28, 679–688 e674 (2018). e-pub ahead of print 2018/09/25.

  11. 11.

    McGowan, D. R., Skwarski, M., Bradley, K. M., Campo, L., Fenwick, J. D., Gleeson, F. V. et al. Buparlisib with thoracic radiotherapy and its effect on tumour hypoxia: A phase I study in patients with advanced non-small cell lung carcinoma. Eur. J. Cancer 113, 87–95 (2019). e-pub ahead of print 2019/04/17.

  12. 12.

    Teoh, S., Morotti, M., Bridges, E., Jones, D., Miar, A., Wigfield, S. et al. Fluciclovine (18F) is a marker for high-affinity glutamine transporter ASCT2-mediated amino acid transport in breast cancer. J. Nucl. Med. 58, 1028 (2017).

  13. 13.

    Turkbey, B., Mena, E., Shih, J., Pinto, P. A., Merino, M. J., Lindenberg, M. L. et al. Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology 270, (849–856 (2014). e-pub ahead of print 2014/01/31.

  14. 14.

    Witney, T. H., Pisaneschi, F., Alam, I. S., Trousil, S., Kaliszczak, M., Twyman, F. et al. Preclinical evaluation of 3-18F-fluoro-2,2-dimethylpropionic acid as an imaging agent for tumor detection. J. Nucl. Med. 55, 1506–1512 (2014). e-pub ahead of print 2014/07/12.

  15. 15.

    Glunde, K., Bhujwalla, Z. M. & Ronen, S. M. Choline metabolism in malignant transformation. Nat. Rev. Cancer 11, 835–848 (2011). e-pub ahead of print 2011/11/18.

  16. 16.

    Schug, Z. T., Peck, B., Jones, D. T., Zhang, Q., Grosskurth, S., Alam, I. S. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71 (2015). e-pub ahead of print 2015/01/15.

  17. 17.

    Jadvar, H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J. Nucl. Med. 52, 81–89 (2011). e-pub ahead of print 2010/12/15.

  18. 18.

    Kostakoglu, L., Kiratli, P., Ruacan, S., Hayran, M., Emri, S., Ergun, E. L. et al. Association of tumor washout rates and accumulation of technetium-99m-MIBI with expression of P-glycoprotein in lung cancer. J. Nucl. Med. 39, 228–234 (1998). e-pub ahead of print 1998/02/26.

  19. 19.

    Piwnica-Worms, D., Kronauge, J. F. & Chiu, M. L. Enhancement by tetraphenylborate of technetium-99m-MIBI uptake kinetics and accumulation in cultured chick myocardial cells. J. Nucl. Med. 32, 1992–1999 (1991). e-pub ahead of print 1991/10/01.

  20. 20.

    Walker-Samuel, S., Ramasawmy, R., Torrealdea, F., Rega, M., Rajkumar, V., Johnson, S. P. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013). e-pub ahead of print 2013/07/09.

  21. 21.

    Jones, C. K., Schlosser, M. J., van Zijl, P. C., Pomper, M. G., Golay, X. & Zhou, J. Amide proton transfer imaging of human brain tumors at 3T. Magn. Reson. Med. 56, 585–592 (2006). e-pub ahead of print 2006/08/08.

  22. 22.

    Cai, K., Xu, H. N., Singh, A., Haris, M., Reddy, R. & Li, L. Z. Characterizing prostate tumor mouse xenografts with CEST and MT-MRI and redox scanning. Adv. Exp. Med. Biol. 765, 39–45 (2013). e-pub ahead of print 2012/08/11.

  23. 23.

    Bolan, P. J., Kim, E., Herman, B. A., Newstead, G. M., Rosen, M. A., Schnall, M. D. et al. MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial. J. Magn. Reson. Imaging 46, 290–302 (2017). e-pub ahead of print 2016/12/17.

  24. 24.

    Andronesi, O. C., Arrillaga-Romany, I. C., Ly, K. I., Bogner, W., Ratai, E. M., Reitz, K. et al. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nat. Commun. 9, 1474 (2018). e-pub ahead of print 2018/04/18.

  25. 25.

    Nelson, S. J., Kurhanewicz, J., Vigneron, D. B., Larson, P. E., Harzstark, A. L., Ferrone, M. et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci. Transl. Med. 5, 198ra108 (2013). e-pub ahead of print 2013/08/16.

  26. 26.

    Romero, Q., Bendahl, P. O., Klintman, M., Loman, N., Ingvar, C., Ryden, L. et al. Ki67 proliferation in core biopsies versus surgical samples - a model for neo-adjuvant breast cancer studies. BMC Cancer 11, 341 (2011). e-pub ahead of print 2011/08/09.

  27. 27.

    Doroshow, J. H. & Parchment, R. E. Oncologic phase 0 trials incorporating clinical pharmacodynamics: from concept to patient. Clin. Cancer Res. 14, 3658–3663 (2008). e-pub ahead of print 2008/06/19.

  28. 28.

    Chandel, N. S., Avizonis, D., Reczek, C. R., Weinberg, S. E., Menz, S., Neuhaus, R. et al. Are Metformin Doses Used in Murine Cancer Models Clinically Relevant? Cell Metab. 23, 569–570 (2016). e-pub ahead of print 2016/04/15.

  29. 29.

    Hadad, S., Iwamoto, T., Jordan, L., Purdie, C., Bray, S., Baker, L. et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res. Treat. 128, 783–794 (2011). e-pub ahead of print 2011/06/10.

  30. 30.

    Bonanni, B., Puntoni, M., Cazzaniga, M., Pruneri, G., Serrano, D., Guerrieri-Gonzaga, A. et al. Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J. Clin. Oncol. 30, 2593–2600 (2012). e-pub ahead of print 2012/05/09.

  31. 31.

    Niraula, S., Dowling, R. J., Ennis, M., Chang, M. C., Done, S. J., Hood, N. et al. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res. Treat. 135, 821–830 (2012). e-pub ahead of print 2012/08/31.

  32. 32.

    Kalinsky, K., Crew, K. D., Refice, S., Xiao, T., Wang, A., Feldman, S. M. et al. Presurgical trial of metformin in overweight and obese patients with newly diagnosed breast cancer. Cancer Invest. 32, 150–157 (2014). e-pub ahead of print 2014/03/13.

  33. 33.

    Laskov, I., Drudi, L., Beauchamp, M. C., Yasmeen, A., Ferenczy, A., Pollak, M. et al. Anti-diabetic doses of metformin decrease proliferation markers in tumors of patients with endometrial cancer. Gynecol. Oncol. 134, 607–614 (2014). e-pub ahead of print 2014/06/28.

  34. 34.

    Schuler, K. M., Rambally, B. S., DiFurio, M. J., Sampey, B. P., Gehrig, P. A., Makowski, L. et al. Antiproliferative and metabolic effects of metformin in a preoperative window clinical trial for endometrial cancer. Cancer Med. 4, 161–173, https://doi.org/10.1002/cam4.353 (2015). e-pub ahead of print 2014/11/25.

  35. 35.

    Mitsuhashi, A., Kiyokawa, T., Sato, Y. & Shozu, M. Effects of metformin on endometrial cancer cell growth in vivo: a preoperative prospective trial. Cancer 120, 2986–2995 (2014). e-pub ahead of print 2014/06/12.

  36. 36.

    Kitson, S. J., Maskell, Z., Sivalingam, V. N., Allen, J. L., Ali, S., Burns, S. et al. PRE-surgical metformin in uterine Malignancy (PREMIUM): a Multi-Center, Randomized Double-Blind, Placebo-Controlled Phase III Trial. Clin. Cancer Res. 25, 2424–2432 (2019). e-pub ahead of print 2018/12/20.

  37. 37.

    Joshua, A. M., Zannella, V. E., Downes, M. R., Bowes, B., Hersey, K., Koritzinsky, M. et al. A pilot ‘window of opportunity’ neoadjuvant study of metformin in localised prostate cancer. Prostate Cancer Prostatic Dis. 17, 252–258 (2014). e-pub ahead of print 2014/05/28.

  38. 38.

    Curry, J. M., Johnson, J., Mollaee, M., Tassone, P., Amin, D., Knops, A. et al. Metformin clinical trial in HPV+ and HPV- head and neck squamous cell carcinoma: impact on cancer cell apoptosis and immune infiltrate. Front. Oncol. 8, 436 (2018). e-pub ahead of print 2018/10/27.

  39. 39.

    Liu, X., Romero, I. L., Litchfield, L. M., Lengyel, E. & Locasale, J. W. Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metab. 24, 728–739 (2016). e-pub ahead of print 2016/10/18.

  40. 40.

    Wang, P. Y., Li, J., Walcott, F. L., Kang, J. G., Starost, M. F., Talagala, S. L. et al. Inhibiting mitochondrial respiration prevents cancer in a mouse model of Li-Fraumeni syndrome. J. Clin. Invest. 127, 132–136 (2017). e-pub ahead of print 2016/11/22.

  41. 41.

    Birsoy, K., Possemato, R., Lorbeer, F. K., Bayraktar, E. C., Thiru, P., Yucel, B. et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508, 108–112 (2014). e-pub ahead of print 2014/03/29.

Download references

Author information

F.A. co-wrote the manuscript. S.L. co-wrote and revised the manuscript.

Correspondence to Simon R. Lord.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

Not applicable

Funding

S.L. is funded by Oxford Experimental Cancer Medicine Centre and Against Breast Cancer. Funding for the NEOMET, FRONTIER and IMAGO window studies was provided by the Oxford Cancer Imaging Centre (funded by Cancer Research UK and the Engineering and Physical Sciences Research Council) and the NIHR Oxford Biomedical Research Centre.

Data availability

Not applicable

Additional information

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aroldi, F., Lord, S.R. Window of opportunity clinical trial designs to study cancer metabolism. Br J Cancer 122, 45–51 (2020). https://doi.org/10.1038/s41416-019-0621-4

Download citation

Further reading