In neuroblastoma (NB), the most powerful prognostic marker, the MYCN amplification (MNA), occasionally shows intratumoural heterogeneity (ITH), i.e. coexistence of MYCN-amplified and non-MYCN-amplified tumour cell clones, called heterogeneous MNA (hetMNA). Prognostication and therapy allocation are still unsolved issues.


The SIOPEN Biology group analysed 99 hetMNA NBs focussing on the prognostic significance of MYCN ITH.


Patients <18 months (18 m) showed a better outcome in all stages as compared to older patients (5-year OS in localised stages: <18 m: 0.95 ± 0.04, >18 m: 0.67 ± 0.14, p = 0.011; metastatic: <18 m: 0.76 ± 0.15, >18 m: 0.28 ± 0.09, p = 0.084). The genomic 'background’, but not MNA clone sizes, correlated significantly with relapse frequency and OS. No relapses occurred in cases of only numerical chromosomal aberrations. Infiltrated bone marrows and relapse tumour cells mostly displayed no MNA. However, one stage 4s tumour with segmental chromosomal aberrations showed a homogeneous MNA in the relapse.


This study provides a rationale for the necessary distinction between heterogeneous and homogeneous MNA. HetMNA tumours have to be evaluated individually, taking age, stage and, most importantly, genomic background into account to avoid unnecessary upgrading of risk/overtreatment, especially in infants, as well as in order to identify tumours prone to developing homogeneous MNA.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).


  1. 1.

    Schwab, M. et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248 (1983).

  2. 2.

    Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984).

  3. 3.

    Cohn, S. L. et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J. Clin. Oncol. 27, 289–297 (2009).

  4. 4.

    Maris, J. M. Recent advances in neuroblastoma. N. Engl. J. Med 362, 2202–2211 (2010).

  5. 5.

    Matthay, K. K. et al. Neuroblastoma. Nat. Rev. Dis. Prim. 2, 16078 (2016).

  6. 6.

    Ambros, P. F. et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br. J. Cancer 100, 1471–1482 (2009).

  7. 7.

    Cheung, N. K. et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA 307, 1062–1071 (2012).

  8. 8.

    Schleiermacher, G. et al. Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br. J. Cancer 107, 1418–1422 (2012).

  9. 9.

    Villamon, E. et al. Genetic instability and intratumoral heterogeneity in neuroblastoma with MYCN amplification plus 11q deletion. PLoS ONE 8, e53740 (2013).

  10. 10.

    Cheung, N. K. et al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J. Clin. Oncol. 30, 3264–3270 (2012).

  11. 11.

    Pinto, N. R. et al. Advances in risk classification and treatment strategies for neuroblastoma. J. Clin. Oncol. 33, 3008–3017 (2015).

  12. 12.

    Ladenstein, R. et al. Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol. 18, 500–514 (2017).

  13. 13.

    Squire, J. A. et al. Identification of MYCN copy number heterogeneity by direct FISH analysis of neuroblastoma preparations. Mol. Diagn. 1, 281–289 (1996).

  14. 14.

    Lorenzana, A. N. et al. Heterogeneity of MYCN amplification in a child with stroma-rich neuroblastoma (ganglioneuroblastoma). Pediatr. Pathol. Lab. Med. 17, 875–883 (1997).

  15. 15.

    Ambros, P. F. et al. Intratumoural heterogeneity of 1p deletions and MYCN amplification in neuroblastomas. Med. Pediatr. Oncol. 36, 1–4 (2001).

  16. 16.

    Kerbl, R. et al. Neuroblastoma with focal MYCN amplification and bone marrow infiltration: a staging and treatment dilemma. Med. Pediatr. Oncol. 38, 109–111 (2002).

  17. 17.

    Noguera, R. et al. MYCN gain and MYCN amplification in a stage 4S neuroblastoma. Cancer Genet. Cytogenet. 140, 157–161 (2003).

  18. 18.

    Ambros, I. M. et al. Quality assessment of genetic markers used for therapy stratification. J. Clin. Oncol. 21, 2077–2084 (2003).

  19. 19.

    Valent, A. et al. Alternative pathways of MYCN gene copy number increase in primary neuroblastoma tumors. Cancer Genet. Cytogenet. 153, 10–15 (2004).

  20. 20.

    Spitz, R., Hero, B., Skowron, M., Ernestus, K. & Berthold, F. MYCN-status in neuroblastoma: characteristics of tumours showing amplification, gain, and non-amplification. Eur. J. Cancer 40, 2753–2759 (2004).

  21. 21.

    Thorner, P. S., Ho, M., Chilton-MacNeill, S. & Zielenska, M. Use of chromogenic in situ hybridization to identify MYCN gene copy number in neuroblastoma using routine tissue sections. Am. J. Surg. Pathol. 30, 635–642 (2006).

  22. 22.

    Sano, H. et al. A case of composite neuroblastoma composed of histologically and biologically distinct clones. Pediatr. Dev. Pathol. 10, 229–232 (2007).

  23. 23.

    Cañete, A. et al. Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: the International Society of Paediatric Oncology European Neuroblastoma Experience. J. Clin. Oncol. 27, 1014–1019 (2009).

  24. 24.

    Theissen, J. et al. Heterogeneity of the MYCN oncogene in neuroblastoma. Clin. Cancer Res. 15, 2085–2090 (2009).

  25. 25.

    Bishop, M. W. et al. Management of stage 4S composite neuroblastoma with a MYCN-amplified nodule. J. Pediatr. Hematol. Oncol. 36, e31–e35 (2014).

  26. 26.

    Berbegall, A. P. et al. Comparative genetic study of intratumoral heterogenous MYCN amplified neuroblastoma versus aggressive genetic profile neuroblastic tumors. Oncogene 35, 1423–1432 (2016).

  27. 27.

    Berbegall, A. P., Navarro, S. & Noguera, R. Diagnostic implications of intrapatient genetic tumor heterogeneity. Mol. Cell. Oncol. 3, e1079671 (2016).

  28. 28.

    Bogen, D. et al. The genetic tumor background is an important determinant for heterogeneous MYCN-amplified neuroblastoma. Int. J. Cancer 139, 153–163 (2016).

  29. 29.

    Marrano, P., Irwin, M. S. & Thorner, P. S. Heterogeneity of MYCN amplification in neuroblastoma at diagnosis, treatment, relapse, and metastasis. Genes Chromosomes Cancer 56, 28–41 (2017).

  30. 30.

    Defferrari, R. et al. Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification. Br. J. Cancer 112, 290–295 (2015).

  31. 31.

    Mehes, G. et al. Automatic detection and genetic profiling of disseminated neuroblastoma cells. Med. Pediatr. Oncol. 36, 205–209 (2001).

  32. 32.

    Scaruffi, P. et al. Identification and characterization of DNA imbalances in neuroblastoma by high-resolution oligonucleotide array comparative genomic hybridization. Cancer Genet. Cytogenet. 177, 20–29 (2007).

  33. 33.

    Combaret, V. et al. Analysis of genomic alterations in neuroblastoma by multiplex ligation-dependent probe amplification and array comparative genomic hybridization: a comparison of results. Cancer Genet. 205, 657–664 (2012).

  34. 34.

    Ambros, I. M., Brunner, C., Abbasi, R., Frech, C. & Ambros, P. F. Ultra-high density SNParray in neuroblastoma molecular diagnostics. Front. Oncol. 4, 202 (2014).

  35. 35.

    Beiske, K. et al. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br. J. Cancer 100, 1627–1637 (2009).

  36. 36.

    Burchill, S. A. et al. Recommendations for the standardization of bone marrow disease assessment and reporting in children with neuroblastoma; on behalf of the International Neuroblastoma Response Criteria Bone Marrow Working Group. Cancer 123, 1095–1105 (2016).

  37. 37.

    Marubini, E. & Valsecchi, M. G. Analysing Survival Data from Clinical Trials and Observational Studies 1st edn (John Wiley & Sons, United Kingdom, 2004).

  38. 38.

    London, W. B. et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 23, 6459–6465 (2005).

  39. 39.

    Fine, J. P. & Gray, R. J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 94, 14 (1999).

  40. 40.

    Bedard, P. L., Hansen, A. R., Ratain, M. J. & Siu, L. L. Tumour heterogeneity in the clinic. Nature 501, 355–364 (2013).

  41. 41.

    Gay, L., Baker, A. M. & Graham, T. A. Tumour cell heterogeneity. F1000Res. 5, F1000 Faculty Rev-238 (2016).

  42. 42.

    McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

  43. 43.

    Mengelbier, L. H. et al. Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer. Nat. Commun. 6, 6125 (2015).

  44. 44.

    Cresswell, G. D. et al. Intra-tumor genetic heterogeneity in Wilms tumor: clonal evolution and clinical implications. EBioMedicine 9, 120–129 (2016).

  45. 45.

    Bellini, A. et al. Deep sequencing reveals occurrence of subclonal ALK mutations in neuroblastoma at diagnosis. Clin. Cancer Res. 21, 4913–4921 (2015).

  46. 46.

    Abbasi, M. R. et al. Impact of disseminated neuroblastoma cells on the identification of the relapse-seeding clone. Clin. Cancer Res. 23, 4224–4232 (2017).

  47. 47.

    Williamson, D. et al. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J. Clin. Oncol. 23, 880–888 (2005).

  48. 48.

    Pfister, S. et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J. Clin. Oncol. 27, 1627–1636 (2009).

  49. 49.

    Williams, R. D. et al. Molecular profiling reveals frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in Wilms tumor. Genes Chromosomes Cancer 50, 982–995 (2011).

  50. 50.

    Theriault, B. L., Dimaras, H., Gallie, B. L. & Corson, T. W. The genomic landscape of retinoblastoma: a review. Clin. Exp. Ophthalmol. 42, 33–52 (2014).

  51. 51.

    Caren, H. et al. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc. Natl. Acad. Sci. USA 107, 4323–4328 (2010).

  52. 52.

    De Bernardi, B. et al. Treatment of localised resectable neuroblastoma. Results of the LNESG1 study by the SIOP Europe Neuroblastoma Group. Br. J. Cancer 99, 1027–1033 (2008).

  53. 53.

    Quetglas, I. M., Moeini, A., Pinyol, R. & Llovet, J. M. Integration of genomic information in the clinical management of HCC. Best Pract. Res. Clin. Gastroenterol. 28, 831–842 (2014).

  54. 54.

    Vance, G. H. et al. Genetic heterogeneity in HER2 testing in breast cancer: panel summary and guidelines. Arch. Pathol. Lab. Med. 133, 611–612 (2009).

  55. 55.

    Seol, H. et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod. Pathol. 25, 938–948 (2012).

Download references


The authors thank Fikret Rifatbegovic, MSc, for excellent graphical support and Marion Zavadil, MA, for critical reading of the manuscript. This work is in memory of our deceased colleague and good friend Luigi Varesio. This work was supported by PI14/01008 (FIS), RD12/36/20 (Institute of Health Carlos III & ERDF), FAECC (2015); CB16/12/00484 (Institute of Health Carlos III & ERDF); Austrian Science Fund (FWF), Grant No. I 2799-B28; and the European Union’s Seventh Framework Program (FP7/2007–2013) under the project ENCCA, grant agreement HEALTH-F2-2011-261474. R.D. is supported by Italian Neuroblastoma Foundation.

Author contributions

I.M.A., R.N. and P.F.A. conceived and designed the study. Clinical, histopathologic and genetic analyses were performed by the correspondent researcher in each country. U.P. was in charge of all the statistical analyses of the study. All authors reviewed the draft and approved the final version for publication.

Author information

Author notes

  1. These authors contributed equally: Ana P. Berbegall, Dominik Bogen, Peter F. Ambros, Rosa Noguera, Inge M. Ambros


  1. Department of Pathology, Medical School, University of Valencia/INCLIVA Biomedical Research Institute, 46010, Valencia, Spain

    • Ana P. Berbegall
    • , Samuel Navarro
    •  & Rosa Noguera
  2. Ciberonc, Madrid, Spain

    • Ana P. Berbegall
    • , Samuel Navarro
    •  & Rosa Noguera
  3. Department of Tumour Biology CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria

    • Dominik Bogen
    • , Peter F. Ambros
    •  & Inge M. Ambros
  4. S2IRP: Studies and Statistics for Integrated Research and Projects CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria

    • Ulrike Pötschger
    •  & Ruth Ladenstein
  5. Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, 0372, Oslo, Norway

    • Klaus Beiske
  6. Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK

    • Nick Bown
  7. Centre Léon Bérard, Laboratoire de Recherche Translationnelle, 28 rue Laennec, Lyon, 69008, France

    • Valérie Combaret
  8. Department of Pathology, Gaslini Institute, Largo G. Gaslini 5, 16147, Genoa, Italy

    • Raffaella Defferrari
    • , Katia Mazzocco
    •  & Angela R. Sementa
  9. Cancer Cytogenetic and Molecular Cytogenetic Laboratory, Schneider Children’s Medical Center of Israel, 49202, Petach Tikva, Israel

    • Marta Jeison
  10. Laboratory of Molecular Biology, Gaslini Institute, Largo G. Gaslini 5, 16147, Genoa, Italy

    • Luigi Varesio
  11. Department of Pediatric Hematology and Oncology, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, 15006, Prague, Czech Republic

    • Ales Vicha
  12. Department of Paediatric Haematology-Oncology, Schneider Children’s Medical Center of Israel, 49202, Petach Tikva, Israel

    • Shifra Ash
  13. Pediatric Oncology Unit, Hospital Universitari i Politècnic La Fe, 46026, Valencia, Spain

    • Victoria Castel
  14. Department of Paediatric Haematology-Oncology, Aix-Marseille University and APHM, Hôpital d’ Enfants de La Timone, 13385, Marseille, France

    • Carole Coze
  15. St Anna Children’s Hospital and Department of Paediatrics of the Medical University, 1090, Vienna, Austria

    • Ruth Ladenstein
  16. Our Lady’s Children’s Hospital, Crumlin, Dublin, D12 N512, Ireland

    • Cormac Owens
  17. Department of Paediatric Haematology-Oncology, Agia Sofia Children’s Hospital Athens, 11528, Athens, Greece

    • Vassilios Papadakis
  18. Department of Paediatric Medicine, Rikshospitalet, Oslo University Hospital, 0372, Oslo, Norway

    • Ellen Ruud
  19. Institute of Clinical Pathology, Medical University Vienna, Vienna, Austria

    • Gabriele Amann
  20. Department of Paediatrics, Medical University Vienna, Vienna, Austria

    • Peter F. Ambros


  1. Search for Ana P. Berbegall in:

  2. Search for Dominik Bogen in:

  3. Search for Ulrike Pötschger in:

  4. Search for Klaus Beiske in:

  5. Search for Nick Bown in:

  6. Search for Valérie Combaret in:

  7. Search for Raffaella Defferrari in:

  8. Search for Marta Jeison in:

  9. Search for Katia Mazzocco in:

  10. Search for Luigi Varesio in:

  11. Search for Ales Vicha in:

  12. Search for Shifra Ash in:

  13. Search for Victoria Castel in:

  14. Search for Carole Coze in:

  15. Search for Ruth Ladenstein in:

  16. Search for Cormac Owens in:

  17. Search for Vassilios Papadakis in:

  18. Search for Ellen Ruud in:

  19. Search for Gabriele Amann in:

  20. Search for Angela R. Sementa in:

  21. Search for Samuel Navarro in:

  22. Search for Peter F. Ambros in:

  23. Search for Rosa Noguera in:

  24. Search for Inge M. Ambros in:

Ethics approval and consent to participate

The institutional ethics board of each hospital and institutions approved the use of neuroblastoma samples and/or clinical data of patients registered in SIOPEN protocols and databases: Regional Committees for Medical and Health Research Ethics; “Comité de Protection des Personnes Sud-Est IV”, references L07–95/L12–171; Ethics Committee for Multi-Centric Trials of the University Hospital Motol; Rabin Medical Center Helsinki Committee; COMITE DE PROTECTION DES PERSONNES SUD MEDITERRANEE II; Ethikkommission der Medizinischen Universität Wien, Austria; National Health System, 1st Health Administration - Periphery of Attica; General Children’s Hospital “Agia Sophia”; and “Comité de Protection des Personnes Ile de France”, reference 0811728. Parents or guardians of patients aged <18 years and adult patients (≥18 years) provided written informed consent.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Rosa Noguera or Inge M. Ambros.

Electronic supplementary material

About this article

Publication history