Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The association of body composition and outcomes following autologous hematopoietic stem cell transplantation in patients with non-Hodgkin lymphoma

Abstract

Recently there has been a growing interest in evaluating body composition as a marker for prognosis in cancer patients. The association of body composition parameters and outcomes has not been deeply investigated in patients with autologous hematopoietic stem cell transplantation (HSCT) recipients with non-Hodgkin lymphoma (NHL). We conducted a retrospective cohort study of 264 NHL patients who received autologous HSCT. PreHSCT abdominal CT scans at the levels of L3 were assessed for body composition measures. We evaluated sarcopenia, myosteatosis, high visceral adipose tissue (VAT) and high visceral adipose tissue density (VATD). Using multivariable Cox proportional regression, we analyzed the association of clinical and transplant-related characteristics with overall survival (OS), relapse-free survival (RFS), and non-relapse mortality (NRM). In a multivariate regression model, patients with higher VATD had worse OS (HR 1.78; 95% confidence intervals CI 1.08–2.95, p = 0.02) and worse NRM (HR 2.31 95% CI 1.08–4.95, p = 0.02) than with lower VATD. Patients with lower levels of VAT also had worse RFS (HR 1.49 95% CI 1.03–2.15, p = 0.03). Sarcopenia and myosteatosis were not associated with outcomes. High pre-transplant VATD was associated with lower OS and higher NRM, and low pre-transplant VAT was associated with worse RFS in patients with NHL undergoing autologous HSCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adiposity radiodensity explained.
Fig. 2: Correlation of VAT and VATD.
Fig. 3: Kaplan–Meier curves VATD overall survival.
Fig. 4: Kaplan–Meier curves VAT relapse-free survival.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to confidentiality reasons but are available from the corresponding author on reasonable request.

References

  1. WCRF/AICR. Diet, nutrition, physical activity and cancer: a global perspective. A summary of the third Expert Report. Report no.: Expert Report 2018. World Cancer Research Fund/American Institute for Cancer Research; 2018.

  2. Nuttall FQ. Body mass index: obesity, BMI, and health: a critical review. Nutr Today. 2015;50:11728. https://doi.org/10.1097/NT.0000000000000092.

    Article  Google Scholar 

  3. Cespedes Feliciano EM, Popuri K, Cobzas D, Baracos VE, Beg MF, Khan AD, et al. Evaluation of automated computed tomography segmentation to assess body composition and mortality associations in cancer patients. J Cachexia Sarcopenia Muscle. 2020. https://doi.org/10.1002/jcsm.12573.

  4. Cespedes Feliciano EM, Chen WY, Bradshaw PT, Prado CM, Alexeeff S, Albers KB, et al. Adipose tissue distribution and cardiovascular disease risk among breast cancer survivors. J Clin Oncol. 2019:JCO1900286. https://doi.org/10.1200/JCO.19.00286.

  5. Cespedes Feliciano EM, Chen WY, Lee V, Albers KB, Prado CM, Alexeeff S, et al. Body composition, adherence to anthracycline and taxane-based chemotherapy, and survival after nonmetastatic breast cancer. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.4668.

  6. Kroenke CH, Prado CM, Meyerhardt JA, Weltzien EK, Xiao J, Cespedes Feliciano EM, et al. Muscle radiodensity and mortality in patients with colorectal cancer. Cancer. 2018;124:3008–15. https://doi.org/10.1002/cncr.31405.

    Article  PubMed  Google Scholar 

  7. Rollins KE, Gopinath A, Awwad A, Macdonald IA, Lobo DN. Computed tomography-based psoas skeletal muscle area and radiodensity are poor sentinels for whole L3 skeletal muscle values. Clin Nutr. 2019. https://doi.org/10.1016/j.clnu.2019.10.003.

    Article  PubMed  Google Scholar 

  8. Alipour O, Lee V, Tejura TK, Wilson ML, Memel Z, Cho J, et al. The assessment of sarcopenia using psoas muscle thickness per height is not predictive of post-operative complications in IBD. Scand J Gastroenterol. 2021;56:1175–81. https://doi.org/10.1080/00365521.2021.1958368.

    Article  CAS  PubMed  Google Scholar 

  9. Lee B, Bae YJ, Jeong WJ, Kim H, Choi BS, Kim JH. Temporalis muscle thickness as an indicator of sarcopenia predicts progression-free survival in head and neck squamous cell carcinoma. Sci Rep. 2021;11:19717. https://doi.org/10.1038/s41598-021-99201-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Go SI, Park MJ, Song HN, Kim HG, Kang MH, Kang JH, et al. A comparison of pectoralis versus lumbar skeletal muscle indices for defining sarcopenia in diffuse large B-cell lymphoma—two are better than one. Oncotarget. 2017;8:47007–19. https://doi.org/10.18632/oncotarget.16552.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arayne AA, Gartrell R, Qiao J, Baird PN, Yeung JM. Comparison of CT derived body composition at the thoracic T4 and T12 with lumbar L3 vertebral levels and their utility in patients with rectal cancer. BMC Cancer. 2023;23:56. https://doi.org/10.1186/s12885-023-10522-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vangelov B, Bauer J, Kotevski D, Smee RI. The use of alternate vertebral levels to L3 in computed tomography scans for skeletal muscle mass evaluation and sarcopenia assessment in patients with cancer: a systematic review. Br J Nutr. 2022;127:722–35. https://doi.org/10.1017/S0007114521001446.

    Article  CAS  PubMed  Google Scholar 

  13. Sumransub N, Cao Q, Juckett M, Betts B, Holtan S, Jurdi NE, et al. Sarcopenia predicts inferior progression free survival in lymphoma patients treated with autologous hematopoietic stem cell transplantation. Transplant Cell Ther. 2023. https://doi.org/10.1016/j.jtct.2023.01.015.

  14. Kapoor ND, Twining PK, Groot OQ, Pielkenrood BJ, Bongers MER, Newman ET, et al. Adipose tissue density on CT as a prognostic factor in patients with cancer: a systematic review. Acta Oncol. 2020;59:1488–95. https://doi.org/10.1080/0284186X.2020.1800087.

    Article  CAS  PubMed  Google Scholar 

  15. Aleixo GFP, Sheu M, Mirzai S, Majhail NS. Prognostic impact of adiposity in hematological malignancies: a systematic review and meta-analysis. Clin Lymphoma Myeloma Leuk. 2022. https://doi.org/10.1016/j.clml.2022.05.008.

  16. Xiao J, Mazurak VC, Olobatuyi TA, Caan BJ, Prado CM. Visceral adiposity and cancer survival: a review of imaging studies. Eur J Cancer Care. 2018;27:e12611. https://doi.org/10.1111/ecc.12611.

    Article  CAS  Google Scholar 

  17. Monirujjaman MD, Martin L, Stretch C, Mazurak VC. Adipose tissue radiodensity in chronic diseases: a literature review of applied methodologies. Immunometabolism. 2021;3:e210033.

  18. da Cunha ADJ, Silveira MN, Takahashi MES, de Souza EM, Mosci C, Ramos CD, et al. Adipose tissue radiodensity: a new prognostic biomarker in people with multiple myeloma. Nutrition. 2021;86:111141. https://doi.org/10.1016/j.nut.2021.111141.

    Article  CAS  PubMed  Google Scholar 

  19. Shah NN, Ahn KW, Litovich C, Sureda A, Kharfan-Dabaja MA, Awan FT, et al. Allogeneic transplantation in elderly patients >/=65 years with non-Hodgkin lymphoma: a time-trend analysis. Blood Cancer J. 2019;9:97. https://doi.org/10.1038/s41408-019-0261-1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hegde A, Murthy HS. Frailty: the missing piece of the pre-hematopoietic cell transplantation assessment? Bone Marrow Transplant. 2018;53:3–10. https://doi.org/10.1038/bmt.2017.192.

    Article  CAS  PubMed  Google Scholar 

  21. Deluche E, Leobon S, Desport JC, Venat-Bouvet L, Usseglio J, Tubiana-Mathieu N. Impact of body composition on outcome in patients with early breast cancer. Support Care Cancer. 2018;26:861–8. https://doi.org/10.1007/s00520-017-3902-6.

    Article  PubMed  Google Scholar 

  22. Jabbour J, Manana B, Zahreddine A, Saade C, Charafeddine M, Bazarbachi A, et al. Sarcopenic obesity derived from PET/CT predicts mortality in lymphoma patients undergoing hematopoietic stem cell transplantation. Curr Res Transl Med. 2019;67:93–9. https://doi.org/10.1016/j.retram.2018.12.001.

    Article  CAS  PubMed  Google Scholar 

  23. Lin RJ, Michaud L, Lobaugh SM, Nakajima R, Mauguen A, Elko TA, et al. The geriatric syndrome of sarcopenia impacts allogeneic hematopoietic cell transplantation outcomes in older lymphoma patients. Leuk Lymphoma. 2020;61:1833–41. https://doi.org/10.1080/10428194.2020.1742909.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Camus V, Lanic H, Kraut J, Modzelewski R, Clatot F, Picquenot JM, et al. Prognostic impact of fat tissue loss and cachexia assessed by computed tomography scan in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Eur J Haematol. 2014;93:9–18. https://doi.org/10.1111/ejh.12285.

    Article  CAS  PubMed  Google Scholar 

  25. Nakamura N, Ninomiya S, Matsumoto T, Nakamura H, Kitagawa J, Shiraki M, et al. Prognostic impact of skeletal muscle assessed by computed tomography in patients with acute myeloid leukemia. Ann Hematol. 2019;98:351–9. https://doi.org/10.1007/s00277-018-3508-1.

    Article  PubMed  Google Scholar 

  26. Jung J, Lee E, Shim H, Park JH, Eom HS, Lee H. Prediction of clinical outcomes through assessment of sarcopenia and adipopenia using computed tomography in adult patients with acute myeloid leukemia. Int J Hematol. 2021;114:44–52. https://doi.org/10.1007/s12185-021-03122-w.

    Article  CAS  PubMed  Google Scholar 

  27. Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 2010;49:71–87. https://doi.org/10.2165/11318100-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  28. Baker SD, van Schaik RH, Rivory LP, Ten Tije AJ, Dinh K, Graveland WJ, et al. Factors affecting cytochrome P-450 3A activity in cancer patients. Clin Cancer Res. 2004;10:8341–50. https://doi.org/10.1158/1078-0432.CCR04-1371.

    Article  CAS  PubMed  Google Scholar 

  29. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–303. https://doi.org/10.4049/jimmunol.1003613.

    Article  CAS  PubMed  Google Scholar 

  30. GroDelta JP, Nattenmuller J, Hemmer S, Tichy D, Krzykalla J, Goldschmidt H, et al. Body fat composition as predictive factor for treatment response in patients with newly diagnosed multiple myeloma—subgroup analysis of the prospective GMMG MM5 trial. Oncotarget. 2017;8:68460–71. https://doi.org/10.18632/oncotarget.19536.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shin DY, Kim A, Byun BH, Moon H, Kim S, Ko YJ, et al. Visceral adipose tissue is prognostic for survival of diffuse large B cell lymphoma treated with frontline R-CHOP. Ann Hematol. 2016;95:409–16. https://doi.org/10.1007/s00277-015-2571-0.

    Article  CAS  PubMed  Google Scholar 

  32. Aleixo GFP, Shachar SS, Nyrop KA, Muss HB, Malpica L, Williams GR. Myosteatosis and prognosis in cancer: systematic review and meta-analysis. Crit Rev Oncol Hematol. 2020;145:102839. https://doi.org/10.1016/j.critrevonc.2019.102839.

    Article  CAS  PubMed  Google Scholar 

  33. Cypess AM. Reassessing human adipose tissue. N Engl J Med. 2022;386:768–79. https://doi.org/10.1056/NEJMra2032804.

    Article  CAS  PubMed  Google Scholar 

  34. Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60:329–39. https://doi.org/10.1079/pns200194.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenquist KJ, Massaro JM, Pedley A, Long MT, Kreger BE, Vasan RS, et al. Fat quality and incident cardiovascular disease, all-cause mortality, and cancer mortality. J Clin Endocrinol Metab. 2015;100:227–34. https://doi.org/10.1210/jc.2013-4296.

    Article  CAS  PubMed  Google Scholar 

  36. Deshmukh AS, Peijs L, Beaudry JL, Jespersen NZ, Nielsen CH, Ma T, et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab. 2019;30:963–75.e7. https://doi.org/10.1016/j.cmet.2019.10.001.

  37. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808. https://doi.org/10.1172/JCI19246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ingram JR, Dougan M, Rashidian M, Knoll M, Keliher EJ, Garrett S, et al. PD-L1 is an activation independent marker of brown adipocytes. Nat Commun. 2017;8:647. https://doi.org/10.1038/s41467-017-00799-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Charette N, Vandeputte C, Ameye L, Bogaert CV, Krygier J, Guiot T, et al. Prognostic value of adipose tissue and muscle mass in advanced colorectal cancer: a post hoc analysis of two non-randomized phase II trials. BMC Cancer. 2019;19:134. https://doi.org/10.1186/s12885-019-5319-8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee JW, Son MW, Chung IK, Cho YS, Lee MS, Lee SM. Significance of CT attenuation and F-18 fluorodeoxyglucose uptake of visceral adipose tissue for predicting survival in gastric cancer patients after curative surgical resection. Gastric Cancer. 2020;23:273–84. https://doi.org/10.1007/s10120-019-01001-2.

    Article  CAS  PubMed  Google Scholar 

  41. Lee JW, Lee SM, Chung YA. Prognostic value of CT attenuation and FDG uptake of adipose tissue in patients with pancreatic adenocarcinoma. Clin Radiol. 2018;73:1056. https://doi.org/10.1016/j.crad.2018.07.094.

    Article  Google Scholar 

  42. Ebadi M, Moctezuma-Velazquez C, Meza-Junco J, Baracos VE, DunichandHoedl AR, Ghosh S, et al. Visceral adipose tissue radiodensity is linked to prognosis in hepatocellular carcinoma patients treated with selective internal radiation therapy. Cancers. 2020;12. https://doi.org/10.3390/cancers12020356.

  43. Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 2013;1831:1533–41. https://doi.org/10.1016/j.bbalip.2013.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahmadi N, Hajsadeghi F, Conneely M, Mingos M, Arora R, Budoff M, et al. Accurate detection of metabolically active “brown” and “white” adipose tissues with computed tomography. Acad Radiol. 2013;20:1443–7. https://doi.org/10.1016/j.acra.2013.08.012.

    Article  PubMed  Google Scholar 

  45. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 2014;20:433–47. https://doi.org/10.1016/j.cmet.2014.06.011.

    Article  CAS  PubMed  Google Scholar 

  46. Gullett NP, Mazurak VC, Hebbar G, Ziegler TR. Nutritional interventions for cancer-induced cachexia. Curr Probl Cancer. 2011;35:58–90. https://doi.org/10.1016/j.currproblcancer.2011.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuhn KS, Muscaritoli M, Wischmeyer P, Stehle P. Glutamine as indispensable nutrient in oncology: experimental and clinical evidence. Eur J Nutr. 2010;49:197–210. https://doi.org/10.1007/s00394-009-0082-2.

    Article  CAS  PubMed  Google Scholar 

  48. Fearon KC. Cancer cachexia: developing multimodal therapy for a multidimensional problem. Eur J Cancer. 2008;44:1124–32. https://doi.org/10.1016/j.ejca.2008.02.033.

    Article  CAS  PubMed  Google Scholar 

  49. Williams GR, Dunne RF, Giri S, Shachar SS, Caan BJ. Sarcopenia in the older adult with cancer. J Clin Oncol. 2021;39:2068–78. https://doi.org/10.1200/JCO.21.00102.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hardee JP, Lynch GS. Current pharmacotherapies for sarcopenia. Expert Opin Pharmacother. 2019;20:1645–57. https://doi.org/10.1080/14656566.2019.1622093.

    Article  CAS  PubMed  Google Scholar 

  51. Detopoulou P, Tsiouda T, Pilikidou M, Palyvou F, Tsekitsidi E, Mantzorou M, et al. Changes in body weight, body composition, phase angle, and resting metabolic rate in male patients with stage IV non-small cell lung cancer undergoing therapy. Medicina (Kaunas). 2022;58. https://doi.org/10.3390/medicina58121779.

  52. Smith MR, Finkelstein JS, McGovern FJ, Zietman AL, Fallon MA, Schoenfeld DA, et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J Clin Endocrinol Metab. 2002;87:599–603. https://doi.org/10.1210/jcem.87.2.8299.

    Article  CAS  PubMed  Google Scholar 

  53. Miyata H, Sugimura K, Motoori M, Fujiwara Y, Omori T, Yanagimoto Y, et al. Clinical assessment of sarcopenia and changes in body composition during neoadjuvant chemotherapy for esophageal cancer. Anticancer Res. 2017;37:3053–9. https://doi.org/10.21873/anticanres.11660.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GFPA and NSM—conceptualization, data curation, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing the original draft and writing review and editing. WW—formal analysis and writing review and editing. P-HC and NSG—conceptualization, investigation, methodology, supervision, validation, visualization, writing to review and editing. FA, RD, BKH, BTH, DJ, JK, BP, RS, AW and PC—data curation, methodology, investigation, validation, visualization, writing to review and editing.

Corresponding author

Correspondence to Navneet S. Majhail.

Ethics declarations

Competing interests

None of the authors has any conflict of interest to declare in relation to this study. Outside the scope of this research, the following authors have financial conflicts of interest to report: NSM serves consultant for Anthem, Inc and own stock from HCA Healthcare.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the Cleveland Clinic Consent to participate.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleixo, G.F.P., Wei, W., Chen, PH. et al. The association of body composition and outcomes following autologous hematopoietic stem cell transplantation in patients with non-Hodgkin lymphoma. Bone Marrow Transplant 58, 1384–1389 (2023). https://doi.org/10.1038/s41409-023-02104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-023-02104-2

Search

Quick links