Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coexistence of HLA and KIR ligand mismatches as a risk factor for viral infection early after cord blood transplantation

Abstract

Viral infection is one of the lethal adverse events after cord blood transplantation (CBT). Human leukocyte antigen (HLA) and killer immunoglobulin-like receptor (KIR) ligand divergences can increase the risk of viral infection due to conflicting interactions between virus-infected cells and immune cells. However, the relationship between these disparities and the frequency of viral infection after CBT remains to be evaluated. Herein, we have conducted a retrospective multicenter study to assess the effect of HLA and KIR ligand mismatches on viral infections after CBT. The study included 429 patients, among which 126 viral infections occurred before day 100. Viral infection was significantly associated with poorer overall survival (OS; hazard ratio [HR] 1.74, p < 0.01). Patients harboring ≥3 mismatches in the HLA allele and inhibitory KIR ligand mismatches (HLA & KIR mismatches) had a significantly greater prevalence of viral infection (HR 1.66, p = 0.04). Thus, patients with HLA & KIR mismatches had poorer outcomes in terms of non-relapse mortality (HR 1.61, p = 0.05). Our study demonstrates the unfavorable impacts of HLA & KIR mismatches on viral infections and non-relapse mortality after CBT. Evaluating the viral infection risk and performance of an appropriate and early intervention in high-risk patients and optimizing the graft selection algorithm could improve the outcome of CBTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow chart describing the patient inclusion and exclusion criteria.
Fig. 2: Prevalence and outcomes of post-CBT viral infection post-CBT.
Fig. 3: Effects of HLA & KIR mismatches on viral infection and grade II–IV aGVHD incidence.
Fig. 4: Effects of HLA & KIR mismatches on post-CBT outcomes.
Fig. 5: Conceptual diagrams of the impacts of HLA & KIR mismatches on post-CBT infection.

Similar content being viewed by others

Data availability statement

Raw data were created by KSCTG. Data supporting the study findings can be available from the corresponding author (YA) upon request.

References

  1. Niederwieser D, Baldomero H, Szer J, Gratwohl M, Aljurf M, Atsuta Y, et al. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey. Bone Marrow Transpl. 2016;51:778–85.

    Article  CAS  Google Scholar 

  2. Yamamoto H. Single cord blood transplantation in Japan; expanding the possibilities of CBT. Int J Hematol. 2019;110:39–49.

    Article  PubMed  Google Scholar 

  3. Ogata M, Oshima K, Ikebe T, Takano K, Kanamori H, Kondo T, et al. Clinical characteristics and outcome of human herpesvirus-6 encephalitis after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2017;52:1563–70.

    Article  CAS  Google Scholar 

  4. Scheurer ME, Pritchett JC, Amirian ES, Zemke NR, Lusso P, Ljungman P. HHV-6 encephalitis in umbilical cord blood transplantation: a systematic review and meta-analysis. Bone Marrow Transpl. 2013;48:574–80.

    Article  CAS  Google Scholar 

  5. Hill JA, Koo S, Guzman Suarez BB, Ho VT, Cutler C, Koreth J, et al. Cord-blood hematopoietic stem cell transplant confers an increased risk for human herpesvirus-6-associated acute limbic encephalitis: a cohort analysis. Biol Blood Marrow Transpl. 2012;18:1638–48.

    Article  Google Scholar 

  6. Beck JC, Wagner JE, DeFor TE, Brunstein CG, Schleiss MR, Young J, et al. Impact of cytomegalovirus (CMV) reactivation after umbilical cord blood transplantation. Biol Blood Marrow Transpl. 2010;16:215–22.

    Article  Google Scholar 

  7. Montesinos P, Sanz J, Cantero S, Lorenzo I, Martín G, Saavedra S, et al. Incidence, risk factors, and outcome of cytomegalovirus infection and disease in patients receiving prophylaxis with oral valganciclovir or intravenous ganciclovir after umbilical cord blood transplantation. Biol Blood Marrow Transpl. 2009;15:730–40.

    Article  CAS  Google Scholar 

  8. Matsumura T, Narimatsu H, Kami M, Yuji K, Kusumi E, Hori A, et al. Cytomegalovirus infections following umbilical cord blood transplantation using reduced intensity conditioning regimens for adult patients. Biol Blood Marrow Transpl. 2007;13:577–83.

    Article  Google Scholar 

  9. Walker CM, van Burik JH, De For TE, Weisdorf DJ. Cytomegalovirus infection after allogeneic transplantation: comparison of cord blood with peripheral blood and marrow graft sources. Biol Blood Marrow Transpl. 2007;13:1106–15.

    Article  Google Scholar 

  10. Lunde LE, Dasaraju S, Cao Q, Cohn CS, Reding M, Bejanyan N, et al. Hemorrhagic cystitis after allogeneic hematopoietic cell transplantation: risk factors, graft source and survival. Bone Marrow Transpl. 2015;50:1432–7.

    Article  CAS  Google Scholar 

  11. Gilis L, Morisset S, Billaud G, Ducastelle-Leprêtre S, Labussière-Wallet H, Nicolini FE, et al. High burden of BK virus-associated hemorrhagic cystitis in patients undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2014;49:664–70.

    Article  CAS  Google Scholar 

  12. Tomonari A, Takahashi S, Ooi J, Fukuno K, Takasugi K, Tsukada N, et al. Hemorrhagic cystitis in adults after unrelated cord blood transplantation: a single-institution experience in Japan. Int J Hematol. 2006;84:268–71.

    Article  PubMed  Google Scholar 

  13. El-Zimaity M, Saliba R, Chan K, Shahjahan M, Carrasco A, Khorshid O, et al. Hemorrhagic cystitis after allogeneic hematopoietic stem cell transplantation: donor type matters. Blood. 2004;103:4674–80.

    Article  CAS  PubMed  Google Scholar 

  14. Robin M, Marque-Juillet S, Scieux C, Peffault de Latour R, Ferry C, Rocha V, et al. Disseminated adenovirus infections after allogeneic hematopoietic stem cell transplantation: incidence, risk factors and outcome. Haematologica. 2007;92:1254–7.

    Article  PubMed  Google Scholar 

  15. Vandenbosch K, Ovetchkine P, Champagne MA, Haddad E, Alexandrov L, Duval M. Varicella-zoster virus disease is more frequent after cord blood than after bone marrow transplantation. Biol Blood Marrow Transpl. 2008;14:867–71.

    Article  Google Scholar 

  16. Townsend A, Bodmer H. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol. 1989;7:601–24.

    Article  CAS  PubMed  Google Scholar 

  17. Iemura T, Arai Y, Kanda J, Kitawaki T, Hishizawa M, Kondo T, et al. Impact of HLA class I allele-level mismatch on viral infection within 100 days after cord blood transplantation. Sci Rep. 2020;10:21150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front Immunol. 2014;5:68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Schaffer M, Malmberg KJ, Ringden O, Ljunggren HG, Remberger M. Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation. Transplantation. 2004;78:1081–5.

    Article  PubMed  Google Scholar 

  20. Zhao XY, Luo XY, Yu XX, Zhao XS, Han TT, Chang YJ, et al. Recipient-donor KIR ligand matching prevents CMV reactivation post-haploidentical T cell-replete transplantation. Br J Haematol. 2017;177:766–81.

    Article  CAS  PubMed  Google Scholar 

  21. Leung W. Use of NK cell activity in cure by transplant. Br J Haematol. 2011;155:14–29.

    Article  CAS  PubMed  Google Scholar 

  22. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–100.

    Article  CAS  PubMed  Google Scholar 

  23. Ogata M, Takano K, Moriuchi Y, Kondo T, Ueki T, Nakano N, et al. Effects of prophylactic foscarnet on human herpesvirus-6 reactivation and encephalitis in cord blood transplant recipients: a prospective multicenter trial with an Historical Control Group. Biol Blood Marrow Transpl. 2018;24:1264–73.

    Article  CAS  Google Scholar 

  24. Okamoto S, Kondo S, Yano K. Guideline for hematopoietic cell transplantation - Infection control in early-phase after transplantation. The Japanese Society for Hematopoietic Cell Transplantation Guideline. 2012;1:5–25.

  25. Atsuta Y. Introduction of Transplant Registry Unified Management Program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data). Int J Hematol. 2016;103:3–10.

    Article  PubMed  Google Scholar 

  26. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

    Article  Google Scholar 

  27. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.

    Article  CAS  Google Scholar 

  28. Sigal LJ, Crotty S, Andino R, Rock KL. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature. 1999;398:77–80.

    Article  CAS  PubMed  Google Scholar 

  29. Itano AA, Jenkins MK. Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol. 2003;4:733–9.

    Article  CAS  PubMed  Google Scholar 

  30. Jenkins MK, Khoruts A, Ingulli E, Mueller DL, McSorley SJ, Reinhardt RL, et al. In vivo activation of antigen-specific CD4 T cells. Annu Rev Immunol. 2001;19:23–45.

    Article  CAS  PubMed  Google Scholar 

  31. Brodin P, Hoglund P. Beyond licensing and disarming: a quantitative view on NK-cell education. Eur J Immunol. 2008;38:2934–7.

    Article  CAS  PubMed  Google Scholar 

  32. Marcenaro E, Cantoni C, Pesce S, Prato C, Pende D, Agaugue S, et al. Uptake of CCR7 and acquisition of migratory properties by human KIR+ NK cells interacting with monocyte-derived DC or EBV cell lines: regulation by KIR/HLA-class I interaction. Blood. 2009;114:4108–16.

    Article  CAS  PubMed  Google Scholar 

  33. Welsh RM, Brubaker JO, Vargas-Cortes M, O’Donnell CL. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J Exp Med. 1991;173:1053–63.

    Article  CAS  PubMed  Google Scholar 

  34. Armstrong AE, Smyth E, Helenowski IB, Tse WT, Duerst RE, Schneiderman J, et al. The impact of high-resolution HLA-A, HLA-B, HLA-C, and HLA-DRB1 on transplant-related outcomes in single-unit umbilical cord blood transplantation in pediatric patients. J Pediatr Hematol Oncol. 2017;39:26–32.

    Article  PubMed  Google Scholar 

  35. Eapen M, Klein JP, Ruggeri A, Spellman S, Lee SJ, Anasetti C, et al. Impact of allele-level HLA matching on outcomes after myeloablative single unit umbilical cord blood transplantation for hematologic malignancy. Blood. 2014;123:133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eapen M, Wang T, Veys PA, Boelens JJ, St Martin A, Spellman S, et al. Allele-level HLA matching for umbilical cord blood transplantation for non-malignant diseases in children: a retrospective analysis. Lancet Haematol. 2017;4:e325–33.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yokoyama H, Morishima Y, Fuji S, Uchida N, Takahashi S, Onizuka M, et al. Impact of HLA Allele Mismatch at HLA-A, -B, -C, and -DRB1 in Single Cord Blood Transplantation. Biol Blood Marrow Transpl. 2020;26:519–28.

    Article  CAS  Google Scholar 

  38. Brunstein CG, Wagner JE, Weisdorf DJ, Cooley S, Noreen H, Barker JN, et al. Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplant depends on transplantation conditioning intensity. Blood. 2009;113:5628–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rocha V, Ruggeri A, Spellman S, Wang T, Sobecks R, Locatelli F, et al. Killer cell immunoglobulin-like receptor-ligand matching and outcomes after unrelated cord blood transplantation in acute myeloid leukemia. Biol Blood Marrow Transpl. 2016;22:1284–9.

    Article  CAS  Google Scholar 

  40. Tanaka J, Morishima Y, Takahashi Y, Yabe T, Oba K, Takahashi S, et al. Effects of KIR ligand incompatibility on clinical outcomes of umbilical cord blood transplantation without ATG for acute leukemia in complete remission. Blood Cancer J. 2013;3:e164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Willemze R, Rodrigues CA, Labopin M, Sanz G, Michel G, Socie G, et al. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia. 2009;23:492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanz J, Jaramillo FJ, Planelles D, Montesinos P, Lorenzo I, Moscardo F, et al. Impact on outcomes of human leukocyte antigen matching by allele-level typing in adults with acute myeloid leukemia undergoing umbilical cord blood transplantation. Biol Blood Marrow Transpl. 2014;20:106–10.

    Article  CAS  Google Scholar 

  43. Yokoyama H, Kanda J, Kawahara Y, Uchida N, Tanaka M, Takahashi S, et al. Reduced leukemia relapse through cytomegalovirus reactivation in killer cell immunoglobulin-like receptor-ligand-mismatched cord blood transplantation. Bone Marrow Transpl. 2021;56:1352–63.

    Article  CAS  Google Scholar 

  44. Yokoyama H, Takenaka K, Nishida T, Seo S, Shinohara A, Uchida N, et al. Favorable effect of cytomegalovirus reactivation on outcomes in cord blood transplant and its differences among disease risk or type. Biol Blood Marrow Transpl. 2020;26:1363–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the physicians and data managers at the participant centers who provided valuable transplantation data. We thank the KSCTG, including the Kyoto University Hospital, Kobe City Medical Center General Hospital, Japanese Red Cross Osaka Hospital, Kurashiki Central Hospital, Tenri Hospital, Kokura Memorial Hospital, Shizuoka General Hospital, Takatsuki Red Cross Hospital, Japanese Red Cross Wakayama Medical Center, Shinko Hospital, Kyoto City Hospital, Kitano Hospital, Japan Red Cross Otsu Hospital, Kyoto-Katsura Hospital, and Shizuoka Cancer Center. This study was supported in part by research funding from the Pfizer Competitive Grant Program, Japanese Society for Hematology, Japan Health Academy, Foundation for Promotion of Cancer Research, Lotte Foundation in Japan, and the Program for the Development of Next-generation Leading Scientists with Global Insight (L-INSIGHT), sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan to YA.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

TI and YA designed the study, reviewed and analyzed data, and wrote the paper; T Kitawaki, T Kondo, JK, YK, and AT-K interpreted data and revised the manuscript; YU, TM, KI, AY, KY, NA, SK, MN, T Kitano, MI, NA, TM, MW, and MT contributed to data collection and provided critiques on the manuscript.

Corresponding author

Correspondence to Yasuyuki Arai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iemura, T., Arai, Y., Kitawaki, T. et al. Coexistence of HLA and KIR ligand mismatches as a risk factor for viral infection early after cord blood transplantation. Bone Marrow Transplant 57, 781–789 (2022). https://doi.org/10.1038/s41409-022-01621-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-022-01621-w

This article is cited by

Search

Quick links