Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Newly proposed threshold and validation of white blood cell count at diagnosis for Philadelphia chromosome-positive acute lymphoblastic leukemia: risk assessment of relapse in patients with negative minimal residual disease at transplantation—a report from the Adult Acute Lymphoblastic Leukemia Working Group of the JSTCT

Abstract

White blood cell count (WBC) at diagnosis is the conventional prognostic factor in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). Nevertheless, little is known about the impact of WBC at diagnosis considering the minimal residual disease (MRD) status at allogeneic hematopoietic cell transplantation (HCT). We evaluated adult patients with Ph+ ALL who achieved negative-MRD and received HCT in first complete remission between 2006 and 2018. The entire cohort was temporally divided into derivation (n = 258) and validation cohorts (n  =  366). Using a threshold of 15,000/μL, which was determined by a receiver operating characteristic curve analysis in the derivation cohort, high WBC was associated with an increased risk of hematological relapse in both the derivation cohort (25.3% vs. 11.6% at 7 years, P = 0.004) and the validation cohort (16.2% vs. 8.5% at 3 years, P = 0.025). In multivariate analyses, high WBC was a strong predictor of hematological relapse in the derivation cohort (HR, 2.52, 95%CI 1.32–4.80, P = 0.005) and in the validation cohort (HR, 2.32, 95%CI, 1.18–4.55; P = 0.015). In conclusion, WBC at diagnosis with a new threshold of 15,000/μL should contribute to better risk stratification in patients with negative-MRD at HCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Early derivation cohort.
Fig. 2: Late validation cohort.
Fig. 3: Entire cohort.

Similar content being viewed by others

References

  1. Thomas DA, Faderl S, Cortes J, O’Brien S, Giles FJ, Kornblau SM, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004;103:4396–407.

    Article  PubMed  CAS  Google Scholar 

  2. Mizuta S, Matsuo K, Nishiwaki S, Imai K, Kanamori H, Ohashi K, et al. Pretransplant administration of imatinib for allo-HSCT in patients with BCR-ABL-positive acute lymphoblastic leukemia. Blood. 2014;123:2325–32.

    Article  PubMed  CAS  Google Scholar 

  3. Candoni A, Rambaldi A, Fanin R, Velardi A, Arcese W, Ciceri F, et al. Outcome of allogeneic hematopoietic stem cell transplantation in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in the era of tyrosine kinase inhibitors: a registry-based study of the Italian Blood and Marrow Transplantation Society (GITMO). Biol Blood Marrow Transpl. 2019;25:2388–97.

    Article  CAS  Google Scholar 

  4. Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123:843–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Jabbour E, Short NJ, Ravandi F, Huang X, Daver N, DiNardo CD, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018;5:e618–e627.

    Article  PubMed  Google Scholar 

  6. Chalandon Y, Thomas X, Hayette S, Cayuela JM, Abbal C, Huguet F, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125:3711–9.

    Article  PubMed  CAS  Google Scholar 

  7. Ravandi F, Othus M, O’Brien SM, Forman SJ, Ha CS, Wong JYC, et al. US intergroup study of chemotherapy plus dasatinib and allogeneic stem cell transplant in Philadelphia chromosome positive ALL. Blood Adv. 2016;1:250–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. DeFilipp Z, Advani AS, Bachanova V, Cassaday RD, Deangelo DJ, Kebriaei P, et al. Hematopoietic cell transplantation in the treatment of adult acute lymphoblastic leukemia: updated 2019 evidence-based review from the American Society for Transplantation and Cellular Therapy. Biol Blood Marrow Transpl. 2019;25:2113–23.

    Article  Google Scholar 

  9. Wang J, Jiang Q, Xu LP, Zhang XH, Chen H, Qin YZ, et al. Allogeneic stem cell transplantation versus tyrosine kinase inhibitors combined with chemotherapy in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Biol Blood Marrow Transpl. 2018;24:741–50.

    Article  CAS  Google Scholar 

  10. Gokbuget N, Hoelzer D, Arnold R, Bohme A, Bartram CR, Freund M, et al. Treatment of adult ALL according to protocols of the German Multicenter Study Group for Adult ALL (GMALL). Hematol Oncol Clin North Am. 2000;14:1307–25. ix

    Article  PubMed  CAS  Google Scholar 

  11. Hoelzer D, Thiel E, Loffler H, Buchner T, Ganser A, Heil G, et al. Prognostic factors in a multicenter study for treatment of acute lymphoblastic leukemia in adults. Blood. 1988;71:123–31.

    Article  PubMed  CAS  Google Scholar 

  12. Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29:532–43.

    Article  PubMed  Google Scholar 

  13. Kanamori H, Mizuta S, Kako S, Kato H, Nishiwaki S, Imai K, et al. Reduced-intensity allogeneic stem cell transplantation for patients aged 50 years or older with B-cell ALL in remission: a retrospective study by the Adult ALL Working Group of the Japan Society for Hematopoietic Cell Transplantation. Bone Marrow Transpl. 2013;48:1513–8.

    Article  CAS  Google Scholar 

  14. Nishiwaki S, Imai K, Mizuta S, Kanamori H, Ohashi K, Fukuda T, et al. Impact of MRD and TKI on allogeneic hematopoietic cell transplantation for Ph+ALL: a study from the adult ALL WG of the JSHCT. Bone Marrow Transpl. 2016;51:43–50.

    Article  CAS  Google Scholar 

  15. Bassan R, Bruggemann M, Radcliffe HS, Hartfield E, Kreuzbauer G, Wetten S. A systematic literature review and meta-analysis of minimal residual disease as a prognostic indicator in adult B-cell acute lymphoblastic leukemia. Haematologica. 2019;104:2028–39.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bartram J, Patel B, Fielding AK. Monitoring MRD in ALL: methodologies, technical aspects and optimal time points for measurement. Semin Hematol. 2020;57:142–8.

    Article  PubMed  Google Scholar 

  17. Brissot E, Labopin M, Beckers MM, Socie G, Rambaldi A, Volin L, et al. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia. Haematologica. 2015;100:392–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kebriaei P, Saliba R, Rondon G, Chiattone A, Luthra R, Anderlini P, et al. Long-term follow-up of allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: impact of tyrosine kinase inhibitors on treatment outcomes. Biol Blood Marrow Transpl. 2012;18:584–92.

    Article  CAS  Google Scholar 

  19. Yoon JH, Min GJ, Park SS, Jeon YW, Lee SE, Cho BS, et al. Minimal residual disease-based long-term efficacy of reduced-intensity conditioning versus myeloablative conditioning for adult Philadelphia-positive acute lymphoblastic leukemia. Cancer. 2019;125:873–83.

    Article  PubMed  CAS  Google Scholar 

  20. Ravandi F, O’Brien S, Thomas D, Faderl S, Jones D, Garris R, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood. 2010;116:2070–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Short NJ, Jabbour E, Sasaki K, Patel K, O’Brien SM, Cortes JE, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016;128:504–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Akahoshi Y, Igarashi A, Fukuda T, Uchida N, Tanaka M, Ozawa Y, et al. Impact of graft-versus-host disease and graft-versus-leukemia effect based on minimal residual disease in Philadelphia chromosome-positive acute lymphoblastic leukemia. Br J Haematol. 2020;190:84–92.

    Article  PubMed  CAS  Google Scholar 

  23. Atsuta Y. Introduction of Transplant Registry Unified Management Program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data). Int J Hematol. 2016;103:3–10.

    Article  PubMed  Google Scholar 

  24. Yokota H, Tsuno NH, Tanaka Y, Fukui T, Kitamura K, Hirai H, et al. Quantification of minimal residual disease in patients with e1a2 BCR-ABL-positive acute lymphoblastic leukemia using a real-time RT-PCR assay. Leukemia. 2002;16:1167–75.

    Article  PubMed  CAS  Google Scholar 

  25. Akahoshi Y, Arai Y, Nishiwaki S, Mizuta S, Marumo A, Uchida N, et al. Minimal residual disease (MRD) positivity at allogeneic hematopoietic cell transplantation, not the quantity of MRD, is a risk factor for relapse of Philadelphia chromosome-positive acute lymphoblastic leukemia. Int J Hematol. 2021;113:832–9.

    Article  PubMed  CAS  Google Scholar 

  26. Akahoshi Y, Mizuta S, Shimizu H, Uchida N, Fukuda T, Kanamori H, et al. Additional cytogenetic abnormalities with philadelphia chromosome-positive acute lymphoblastic leukemia on allogeneic stem cell transplantation in the tyrosine kinase inhibitor era. Biol Blood Marrow Transpl. 2018;24:2009–16.

    Article  Google Scholar 

  27. Fleischhauer K, Hsu KC, Shaw BE. Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection. Bone Marrow Transpl. 2018;53:1498–507.

    Article  Google Scholar 

  28. Akahoshi Y, Nishiwaki S, Arai Y, Harada K, Najima Y, Kanda Y, et al. Reduced-intensity conditioning is a reasonable alternative for Philadelphia chromosome-positive acute lymphoblastic leukemia among elderly patients who have achieved negative minimal residual disease: a report from the Adult Acute Lymphoblastic Leukemia Working Group of the JSHCT. Bone Marrow Transpl. 2020;55:1317–25.

    Article  CAS  Google Scholar 

  29. Kebriaei P, Anasetti C, Zhang MJ, Wang HL, Aldoss I, de Lima M, et al. Intravenous busulfan compared with total body irradiation pretransplant conditioning for adults with acute lymphoblastic leukemia. Biol Blood Marrow Transpl. 2018;24:726–33.

    Article  CAS  Google Scholar 

  30. Pavlu J, Labopin M, Niittyvuopio R, Socie G, Yakoub-Agha I, Wu D, et al. Measurable residual disease at myeloablative allogeneic transplantation in adults with acute lymphoblastic leukemia: a retrospective registry study on 2780 patients from the acute leukemia working party of the EBMT. J Hematol Oncol. 2019;12:108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Soiffer RJ, Kim HT, McGuirk J, Horwitz ME, Johnston L, Patnaik MM, et al. Prospective, randomized, double-blind, phase iii clinical trial of anti-t-lymphocyte globulin to assess impact on chronic graft-versus-host disease-free survival in patients undergoing HLA-matched unrelated myeloablative hematopoietic cell transplantation. J Clin Oncol. 2017;35:4003–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Giebel S, Labopin M, Czerw T, Socie G, Blaise D, Ghavamzadeh A, et al. Impact of anti-thymocyte globulin on results of allogeneic peripheral blood stem cell transplantation for patients with Philadelphia-positive acute lymphoblastic leukaemia: An analysis by the Acute Leukemia Working Party of the EBMT. Eur J Cancer. 2019;106:212–9.

    Article  PubMed  CAS  Google Scholar 

  33. Sorror ML, Storer B, Storb RF. Validation of the hematopoietic cell transplantation-specific comorbidity index (HCT-CI) in single and multiple institutions: limitations and inferences. Biol Blood Marrow Transpl. 2009;15:757–8.

    Article  Google Scholar 

  34. Mehta RS, Holtan SG, Wang T, Hemmer MT, Spellman SR, Arora M, et al. Composite GRFS and CRFS outcomes after adult alternative donor HCT. J Clin Oncol. 2020;38:2062–76.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mohty M, Labopin M, Volin L, Gratwohl A, Socie G, Esteve J, et al. Reduced-intensity versus conventional myeloablative conditioning allogeneic stem cell transplantation for patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Blood. 2010;116:4439–43.

    Article  PubMed  CAS  Google Scholar 

  36. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transpl. 2009;15:367–9.

    Article  Google Scholar 

  37. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.

    Article  CAS  Google Scholar 

  38. Giebel S, Czyz A, Ottmann O, Baron F, Brissot E, Ciceri F, et al. Use of tyrosine kinase inhibitors to prevent relapse after allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a position statement of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Cancer. 2016;122:2941–51.

    Article  PubMed  CAS  Google Scholar 

  39. Akahoshi Y, Nishiwaki S, Mizuta S, Ohashi K, Uchida N, Tanaka M, et al. Tyrosine kinase inhibitor prophylaxis after transplant for Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer Sci. 2019;110:3255–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Martinelli G, Iacobucci I, Storlazzi CT, Vignetti M, Paoloni F, Cilloni D, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27:5202–7.

    Article  PubMed  CAS  Google Scholar 

  41. Fedullo AL, Messina M, Elia L, Piciocchi A, Gianfelici V, Lauretti A, et al. Prognostic implications of additional genomic lesions in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2019;104:312–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pfeifer H, Raum K, Markovic S, Nowak V, Fey S, Oblander J, et al. Genomic CDKN2A/2B deletions in adult Ph(+) ALL are adverse despite allogeneic stem cell transplantation. Blood. 2018;131:1464–75.

    Article  PubMed  CAS  Google Scholar 

  43. Pfeifer H, Wassmann B, Pavlova A, Wunderle L, Oldenburg J, Binckebanck A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2007;110:727–34.

    Article  PubMed  CAS  Google Scholar 

  44. Soverini S, Vitale A, Poerio A, Gnani A, Colarossi S, Iacobucci I, et al. Philadelphia-positive acute lymphoblastic leukemia patients already harbor BCR-ABL kinase domain mutations at low levels at the time of diagnosis. Haematologica. 2011;96:552–7.

    Article  PubMed  CAS  Google Scholar 

  45. Akahoshi Y, Nakasone H, Kawamura K, Kusuda M, Kawamura S, Takeshita J, et al. Detection of T315I using digital polymerase chain reaction in allogeneic transplant recipients with Ph-positive acute lymphoblastic leukemia in the dasatinib era. Exp Hematol. 2020;81:60–7.

    Article  PubMed  CAS  Google Scholar 

  46. Soverini S, De Benedittis C, Papayannidis C, Paolini S, Venturi C, Iacobucci I, et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: The main changes are in the type of mutations, but not in the frequency of mutation involvement. Cancer. 2014;120:1002–9.

    Article  PubMed  CAS  Google Scholar 

  47. Rousselot P, Coude MM, Gokbuget N, Gambacorti Passerini C, Hayette S, Cayuela JM, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128:774–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Tachibana T, Najima Y, Akahoshi Y, Hirabayashi S, Harada K, Doki N, et al. The impacts of BCR-ABL1 mutations in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia who underwent allogeneic hematopoietic cell transplantation. Ann Hematol. 2020;99:2393–404.

    Article  PubMed  CAS  Google Scholar 

  49. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre PD, Paquette R, Chuah C, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132:393–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kantarjian H, Stein A, Gokbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J Med. 2017;376:836–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gokbuget N, Kantarjian HM, Bruggemann M, Stein AS, Bargou RC, Dombret H, et al. Molecular response with blinatumomab in relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Adv. 2019;3:3033–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375:740–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl J Med. 2018;378:439–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hirschbuhl K, Labopin M, Houhou M, Gabellier L, Labussiere-Wallet H, Lioure B, et al. Second- and third-generation tyrosine kinase inhibitors for Philadelphia-positive adult acute lymphoblastic leukemia relapsing post allogeneic stem cell transplantation-a registry study on behalf of the EBMT Acute Leukemia Working Party. Bone Marrow Transplant. 2021;56:1190-9.

  55. Marks DI, Kebriaei P, Stelljes M, Gokbuget N, Kantarjian H, Advani AS, et al. Outcomes of allogeneic stem cell transplantation after inotuzumab ozogamicin treatment for relapsed or refractory acute lymphoblastic leukemia. Biol Blood Marrow Transpl. 2019;25:1720–9.

    Article  CAS  Google Scholar 

  56. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the contributions of many physicians and data managers throughout the JSTCT, the Japan Marrow Donor Program (JMDP), and the Japan Cord Blood Bank Network (JCBBN), who made this analysis possible. We would also like to thank the members of the Transplant Registry Unified Management committees at JSTCT, JMDP, and JCBBN for their dedicated management of data. Y. Akahoshi is a Research Fellow of Japan Society of the Promotion of Science (JSPS) and this work was supported by JSPS KAKENHI Grant Number JP20J10298.

Author information

Authors and Affiliations

Authors

Contributions

Y. Akahoshi. designed the study, analyzed the data, and wrote the manuscript; Y. Arai., S.N., T. T., A.S. and S.K. reviewed, and revised the manuscript; N.D., N.U., M.T., Y. Kanda., S.S., Y.O., K.S. and Y. Katayama. provided important clinical data; J.T., T.F. and Y. Atsuta. collected the patient data; All authors contributed to the writing of the report and approved the final version of the article.

Corresponding author

Correspondence to Yu Akahoshi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akahoshi, Y., Arai, Y., Nishiwaki, S. et al. Newly proposed threshold and validation of white blood cell count at diagnosis for Philadelphia chromosome-positive acute lymphoblastic leukemia: risk assessment of relapse in patients with negative minimal residual disease at transplantation—a report from the Adult Acute Lymphoblastic Leukemia Working Group of the JSTCT. Bone Marrow Transplant 56, 2842–2848 (2021). https://doi.org/10.1038/s41409-021-01422-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-021-01422-7

Search

Quick links