Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic advantages provided by banked virus-specific T-cells of defined HLA-restriction

Abstract

We have developed banks of EBV and CMV-specific T-cell lines generated from healthy seropositive third party donors and characterized them as to their HLA type, virus specificity, lack of alloreactivity, and HLA restriction. We here summarize results of studies employing these immediately accessible, broadly-applicable third party virus-specific T-cells for adoptive therapy of EBV lymphomas and CMV infections in allo-HCT recipients. We describe the characteristics contributing to their safety. We also discuss several distinctive advantages of banked third party virus-specific T-cells selected on the basis of their HLA restriction, particularly in the treatment of Rituximab-non-responsive EBV+ lymphomas and drug refractory CMV infections complicating HLA non-identical transplants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257:238–41.

    Article  CAS  PubMed  Google Scholar 

  2. Papadopoulos EB, Ladanyi M, Emanuel D, Mackinnon S, Boulad F, Carabasi MH, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. New Engl J Med. 1994;330:1185–91.

    Article  CAS  PubMed  Google Scholar 

  3. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345:9–13.

    Article  CAS  PubMed  Google Scholar 

  4. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003;362:1375–7.

    Article  PubMed  Google Scholar 

  5. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116:4360–7.

    Article  CAS  PubMed  Google Scholar 

  6. Merlo A, Turrini R, Dolcetti R, Zanovello P, Amadori A, Rosato A. Adoptive cell therapy against EBV-related malignancies: a survey of clinical results. Expert Opin Biol Ther. 2008;8:1265–94.

    Article  CAS  PubMed  Google Scholar 

  7. Bollard CM, Rooney CM, Heslop HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol. 2012;9:510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang YT, Neofytos D, Foldi J, Kim SJ, Maloy M, Chung D, et al. Cytomegalovirus infection after CD34(+)-selected hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22:1480–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. McGoldrick SM, Bleakley ME, Guerrero A, Turtle CJ, Yamamoto TN, Pereira SE, et al. Cytomegalovirus-specific T cells are primed early after cord blood transplant but fail to control virus in vivo. Blood. 2013;121:2796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haque T, Wilkie GM, Taylor C, Amlot PL, Murad P, Iley A, et al. Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet. 2002;360:436–42.

    Article  PubMed  Google Scholar 

  11. Barker JN, Doubrovina E, Sauter C, Jaroscak JJ, Perales MA, Doubrovin M, et al. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood. 2010;116:5045–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doubrovina E, Oflaz-Sozmen B, Prockop SE, Kernan NA, Abramson S, Teruya-Feldstein J, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119:2644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121:5113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Reilly RJ, Prockop S, Hasan AN, Koehne G, Doubrovina E. Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transplant. 2016;51:1163–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tzannou I, Papadopoulou A, Naik S, Leung K, Martinez CA, Ramos CA, et al. Off-the-shelfvirus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, Epstein-Barr Virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2017;35:3547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vickers MA, Wilkie GM, Robinson N, Rivera N, Haque T, Crawford DH, et al. Establishment and operation of a good manufacturing practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol. 2014;167:402–10.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Uhlin M, Gertow J, Uzunel M, Okas M, Berglund S, Watz E, et al. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis. 2012;55:1064–73.

    Article  CAS  PubMed  Google Scholar 

  18. Withers B, Blyth E, Clancy LE, Yong A, Fraser C, Burgess J, et al. Long-term control of recurrent or refractory viral infections after allogeneic HSCT with third-party virus-specific T cells. Blood Adv. 2017;1:2193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prockop SE, Doubrovina E, Baroudy K, Boulad F, Khalaf R, Papadopoulos E, et al. Banked EBV-specific T-cells from HLA-partially matched normal donors to induce durable remissions of rituximab refractory EBV+ B-cell lymphomas post hematopoietic and organ allografts. J Clin Oncol. 2015;33(15_suppl):10016.

    Article  Google Scholar 

  20. Prockop S, Doubrovina E, Rodriguez-Sanchez I, Hasan AN, Barker J, Castro-Malaspina HR, et al. Adoptive T-cell therapy with 3rd party CMV-pp65-specific CTLs for CMV viremia and disease arising after allogeneic hematopoietic stem cell transplant. Blood 2017;130(Suppl 1):747.

    Google Scholar 

  21. Prockop S, Doubrovina E, Hasan A, Koehne G, Dahi P, Papadopoulos E, et al. Five years of therapy with donor and 3rd party derived EBV and CMV specific cytotoxic T cells - safety after more than 1,000 infusions. Bone marrow Transplant. 2017;52:S17.

    Article  Google Scholar 

  22. Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013;122:2965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain MCAR. T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24:739–48.

    Article  CAS  PubMed  Google Scholar 

  25. Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol. 2003;21:405–13.

    Article  CAS  PubMed  Google Scholar 

  26. Lucas KG, Small TN, Heller G, Dupont B, O’Reilly RJ. The development of cellular immunity to Epstein-Barr virus after allogeneic bone marrow transplantation. Blood. 1996;87:2594–603.

    Article  CAS  PubMed  Google Scholar 

  27. Keever-Taylor CA, Devine SM, Soiffer RJ, Mendizabal A, Carter S, Pasquini MC, et al. Characteristics of CliniMACS(R) System CD34-enriched T cell-depleted grafts in a multicenter trial for acute myeloid leukemia-Blood and Marrow Transplant Clinical Trials Network (BMT CTN) protocol 0303. Biol Blood Marrow Transplant. 2012;18:690–7.

    Article  PubMed  Google Scholar 

  28. Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ, et al. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest. 2003;112:101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, et al. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J Clin Invest. 2015;125:2677–89.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Doubrovin MM, Doubrovina ES, Zanzonico P, Sadelain M, Larson SM, O’Reilly RJ. In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res. 2007;67:11959–69.

    Article  CAS  PubMed  Google Scholar 

  31. Lacerda JF, Ladanyi M, Louie DC, Fernandez JM, Papadopoulos EB, O’Reilly RJ. Human Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes home preferentially to and induce selective regressions of autologous EBV-induced B cell lymphoproliferations in xenografted C.B-17 scid/scid mice. J Exp Med. 1996;183:1215–28.

    Article  CAS  PubMed  Google Scholar 

  32. Ressing ME, Horst D, Griffin BD, Tellam J, Zuo J, Khanna R, et al. Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol. 2008;18:397–408.

    Article  CAS  PubMed  Google Scholar 

  33. Snow AL, Martinez OM. Epstein-Barr virus: evasive maneuvers in the development of PTLD. Am J Transplant. 2007;7:271–7.

    Article  CAS  PubMed  Google Scholar 

  34. Gottschalk S, Ng CY, Perez M, Smith CA, Sample C, Brenner MK, et al. An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood. 2001;97:835–43.

    Article  CAS  PubMed  Google Scholar 

  35. Styczynski J. Who is the patient at risk of CMV recurrence: a review of the current scientific evidence with a focus on hematopoietic cell transplantation. Infect Dis Ther. 2018;7:1–16.

    Article  PubMed  Google Scholar 

  36. Lacey SF, Villacres MC, La Rosa C, Wang Z, Longmate J, Martinez J, et al. Relative dominance of HLA-B*07 restricted CD8+ T-lymphocyte immune responses to human cytomegalovirus pp65 in persons sharing HLA-A*02 and HLA-B*07 alleles. Hum Immunol. 2003;64:440–52.

    Article  CAS  PubMed  Google Scholar 

  37. Hyun SJ, Sohn HJ, Lee HJ, Lee SD, Kim S, Sohn DH, et al. Comprehensive analysis of cytomegalovirus pp65 antigen-specific CD8(+) T cell responses according to human leukocyte antigen class I allotypes and intraindividual dominance. Front Immunol. 2017;8:1591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zaia JA, Gallez-Hawkins G, Churchill MA, Morton-Blackshere A, Pande H, Adler SP, et al. Comparative analysis of human cytomegalovirus a-sequence in multiple clinical isolates by using polymerase chain reaction and restriction fragment length polymorphism assays. J Clin Microbiol. 1990;28:2602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jackson SE, Redeker A, Arens R, van Baarle D, van den Berg SPH, Benedict CA, et al. CMV immune evasion and manipulation of the immune system with aging. Geroscience. 2017;39:273–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahn K, Angulo A, Ghazal P, Peterson PA, Yang Y, Fruh K. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci USA. 1996;93:10990–5.

    Article  CAS  PubMed  Google Scholar 

  41. Ameres S, Besold K, Plachter B, Moosmann A. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity. J Immunol. 2014;192:5894–905.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Publication of this supplement was sponsored Gilead Sciences Europe Ltd, Cell Source, Inc., The Chorafas Institute for Scientific Exchange of the Weizmann Institute of Science, Kiadis Pharma, Miltenyi Biotec, Celgene, Centro Servizi Congressuali, Almog Diagnostic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. O’Reilly.

Ethics declarations

Conflict of interest

RJO’R received consulting fees and grant support from Atara Biotherapeutics, Starr Cancer Consortium, and POl CA23766. When Atara Biotherapeutics licensed banks of EBV and CMV T-cells, RJO’R received a part of the royalties paid to Memorial Sloan Kettering Cancer Center. MSKCC also has several patents of which RJO’R is an inventor bearing on the T-cells. SP received grant support from Atara Biotherapeutics, Mesoblast, and Janssen Pharmaceuticals. SP was an inventor for patents held by MSK but does not receive royalties or income for the inventions. ANH received grant support from Atara Biotherapeutics, holds patents and received royalties for Virus Specific T cell work with Atara Biotherapeutics. ED received grant support and consulting fees from Atara Biotherapeutics. ED also has patents, of which, the author is a co-inventor and received a part of royalties to Memorial Sloan Kettering Cancer Center from Atara Biotherapeutics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Reilly, R.J., Prockop, S., Hasan, A. et al. Therapeutic advantages provided by banked virus-specific T-cells of defined HLA-restriction. Bone Marrow Transplant 54 (Suppl 2), 759–764 (2019). https://doi.org/10.1038/s41409-019-0614-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0614-1

This article is cited by

Search

Quick links