Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunotherapy

Generation and infusion of multi-antigen-specific T cells to prevent complications early after T-cell depleted allogeneic stem cell transplantation—a phase I/II study

Abstract

Prophylactic infusion of selected donor T cells can be an effective method to restore specific immunity after T-cell-depleted allogeneic stem cell transplantation (TCD-alloSCT). In this phase I/II study, we aimed to reduce the risk of viral complications and disease relapses by administrating donor-derived CD8pos T cells directed against cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus antigens, tumor-associated antigens (TAA) and minor histocompatibility antigens (MiHA). Twenty-seven of thirty-six screened HLA-A*02:01pos patients and their CMVpos and/or EBVpos donors were included. Using MHC-I-Streptamers, 27 T-cell products were generated containing a median of 5.2 × 106 cells. Twenty-four products were administered without infusion-related complications at a median of 58 days post alloSCT. No patients developed graft-versus-host disease during follow-up. Five patients showed disease progression without coinciding expansion of TAA/MiHA-specific T cells. Eight patients experienced CMV- and/or EBV-reactivations. Four of these reactivations were clinically relevant requiring antiviral treatment, of which two progressed to viral disease. All resolved ultimately. In 2/4 patients with EBV-reactivations and 6/8 patients with CMV-reactivations, viral loads were followed by the expansion of donor-derived virus target-antigen-specific T cells. In conclusion, generation of multi-antigen-specific T-cell products was feasible, infusions were well tolerated and expansion of target-antigen-specific T cells coinciding viral reactivations was illustrated in the majority of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomas ED. Bone marrow transplantation from bench to bedside. Ann N Y Acad Sci. 1995;770:34–41.

    Article  CAS  PubMed  Google Scholar 

  2. Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112:4371–83.

    Article  CAS  PubMed  Google Scholar 

  3. Falkenburg JH, Warren EH. Graft versus leukemia reactivity after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17:S33–8.

    Article  PubMed  Google Scholar 

  4. Urbano-Ispizua A, Garcia-Conde J, Brunet S, Hernandez F, Sanz G, Petit J, et al. High incidence of chronic graft versus host disease after allogeneic peripheral blood progenitor cell transplantation. the Spanish Group of Allo-PBPCT. Haematologica. 1997;82:683–9.

    CAS  PubMed  Google Scholar 

  5. Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7:340–52.

    Article  CAS  PubMed  Google Scholar 

  6. Martin PJ, Hansen JA, Buckner CD, Sanders JE, Deeg HJ, Stewart P, et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood. 1985;66:664–72.

    Article  CAS  PubMed  Google Scholar 

  7. Hale G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy. 2001;3:137–43.

    Article  CAS  PubMed  Google Scholar 

  8. Chakrabarti S, MacDonald D, Hale G, Holder K, Turner V, Czarnecka H, et al. T-cell depletion with Campath-1H “in the bag” for matched related allogeneic peripheral blood stem cell transplantation is associated with reduced graft-versus-host disease, rapid immune constitution and improved survival. Br J Haematol. 2003;121:109–18.

    Article  PubMed  Google Scholar 

  9. Barge RM, Starrenburg CW, Falkenburg JH, Fibbe WE, Marijt EW, Willemze R. Long-term follow-up of myeloablative allogeneic stem cell transplantation using Campath “in the bag” as T-cell depletion: the Leiden experience. Bone Marrow Transpl. 2006;37:1129–34.

    Article  CAS  Google Scholar 

  10. Howard DS, Phillips IG, Reece DE, Munn RK, Henslee-Downey J, Pittard M, et al. Adenovirus infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 1999;29:1494–501.

    Article  CAS  PubMed  Google Scholar 

  11. La Rosa AM, Champlin RE, Mirza N, Gajewski J, Giralt S, Rolston KV, et al. Adenovirus infections in adult recipients of blood and marrow transplants. Clin Infect Dis. 2001;32:871–6.

    Article  PubMed  Google Scholar 

  12. Styczynski J, Einsele H, Gil L, Ljungman P. Outcome of treatment of Epstein-Barr virus-related post-transplant lymphoproliferative disorder in hematopoietic stem cell recipients: a comprehensive review of reported cases. Transpl Infect Dis. 2009;11:383–92.

    Article  CAS  PubMed  Google Scholar 

  13. Ljungman P, Hakki M, Boeckh M. Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol Oncol Clin North Am. 2011;25:151–69.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reusser P, Riddell SR, Meyers JD, Greenberg PD. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991;78:1373–80.

    Article  CAS  PubMed  Google Scholar 

  15. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038–44.

    Article  CAS  PubMed  Google Scholar 

  16. Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, Loffler J, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99:3916–22.

    Article  CAS  PubMed  Google Scholar 

  17. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003;362:1375–7.

    Article  PubMed  Google Scholar 

  18. Peggs KS, Mackinnon S. Augmentation of virus-specific immunity after hematopoietic stem cell transplantation by adoptive T-cell therapy. Hum Immunol. 2004;65:550–7.

    Article  PubMed  Google Scholar 

  19. Feuchtinger T, Matthes-Martin S, Richard C, Lion T, Fuhrer M, Hamprecht K, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134:64–76.

    Article  PubMed  Google Scholar 

  20. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116:4360–7.

    Article  CAS  PubMed  Google Scholar 

  21. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115:925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M, et al. Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion. 2011;51:591–9.

    Article  CAS  PubMed  Google Scholar 

  23. Meij P, Jedema I, Zandvliet ML, van der Heiden PL, van de Meent M, van Egmond HM, et al. Effective treatment of refractory CMV reactivation after allogeneic stem cell transplantation with in vitro-generated CMV pp65-specific CD8+ T-cell lines. J Immunother. 2012;35:621–8.

    Article  CAS  PubMed  Google Scholar 

  24. Neuenhahn M, Albrecht J, Odendahl M, Schlott F, Dossinger G, Schiemann M, et al. Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT. Leukemia. 2017;31:2161–71.

  25. Jacobsen T, Sifontis N. Drug interactions and toxicities associated with the antiviral management of cytomegalovirus infection. Am J Health Syst Pharm. 2010;67:1417–25.

    Article  CAS  PubMed  Google Scholar 

  26. Kapp M, Stevanovic S, Fick K, Tan SM, Loeffler J, Opitz A, et al. CD8+ T-cell responses to tumor-associated antigens correlate with superior relapse-free survival after allo-SCT. Bone Marrow Transpl. 2009;43:399–410.

    Article  CAS  Google Scholar 

  27. Anguille S, Van Tendeloo VF, Berneman ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia. 2012;26:2186–96.

    Article  CAS  PubMed  Google Scholar 

  28. Griffioen M, van Bergen CA, Falkenburg JH. Autosomal minor histocompatibility antigens: how genetic variants create diversity in immune targets. Front Immunol. 2016;7:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA, et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA. 2003;100:2742–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Micklethwaite KP, Clancy L, Sandher U, Hansen AM, Blyth E, Antonenas V, et al. Prophylactic infusion of cytomegalovirus-specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation. Blood. 2008;112:3974–81.

    Article  CAS  PubMed  Google Scholar 

  31. Mackinnon S, Thomson K, Verfuerth S, Peggs K, Lowdell M. Adoptive cellular therapy for cytomegalovirus infection following allogeneic stem cell transplantation using virus-specific T cells. Blood Cells Mol Dis. 2008;40:63–7.

    Article  CAS  PubMed  Google Scholar 

  32. Leen AM, Christin A, Myers GD, Liu H, Cruz CR, Hanley PJ, et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114:4283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bollard CM, Heslop HE. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood. 2016;127:3331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Houghtelin A, Bollard CM. Virus-Specific T cells for the immunocompromised patient. Front Immunol. 2017;8:1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morris EC, Rebello P, Thomson KJ, Peggs KS, Kyriakou C, Goldstone AH, et al. Pharmacokinetics of alemtuzumab used for in vivo and in vitro T-cell depletion in allogeneic transplantations: relevance for early adoptive immunotherapy and infectious complications. Blood. 2003;102:404–6.

    Article  CAS  PubMed  Google Scholar 

  36. Freimuller C, Stemberger J, Artwohl M, Germeroth L, Witt V, Fischer G, et al. Selection of adenovirus-specific and Epstein-Barr virus-specific T cells with major histocompatibility class I streptamers under Good Manufacturing Practice (GMP)-compliant conditions. Cytotherapy. 2015;17:989–1007.

    Article  CAS  PubMed  Google Scholar 

  37. Roex MCJ, Hageman L, Heemskerk MT, Veld SAJ, van Liempt E, Kester MGD, et al. The simultaneous isolation of multiple high and low frequent T-cell populations from donor peripheral blood mononuclear cells using the major histocompatibility complex I-Streptamer isolation technology. Cytotherapy. 2018;20:543–55.

    Article  CAS  PubMed  Google Scholar 

  38. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202:379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stemberger C, Graef P, Odendahl M, Albrecht J, Dossinger G, Anderl F, et al. Lowest numbers of primary CD8(+) T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood. 2014;124:628–37.

    Article  CAS  PubMed  Google Scholar 

  40. Loeff FC, van Egmond EHM, Moes D, Wijnands C, Von Dem Borne PA, Veelken H, et al. Impact of alemtuzumab pharmacokinetics on T-cell dynamics, graft-versus-host disease and viral reactivation in patients receiving allogeneic stem cell transplantation with an alemtuzumab-based T-cell-depleted graft. Transpl Immunol. 2019. (In press).

  41. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation. 1974;18:295–304.

    Article  CAS  PubMed  Google Scholar 

  42. Chalandon Y, Passweg JR, Schmid C, Olavarria E, Dazzi F, Simula MP, et al. Outcome of patients developing GVHD after DLI given to treat CML relapse: a study by the Chronic Leukemia Working Party of the EBMT. Bone Marrow Transpl. 2010;45:558–64.

    Article  CAS  Google Scholar 

  43. Chakrabarti S, Mackinnon S, Chopra R, Kottaridis PD, Peggs K, O'Gorman P, et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood. 2002;99:4357–63.

    Article  CAS  PubMed  Google Scholar 

  44. Seggewiss R, Einsele H. Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood. 2010;115:3861–8.

    Article  CAS  PubMed  Google Scholar 

  45. Leen AM, Bollard CM, Myers GD, Rooney CM. Adenoviral infections in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2006;12:243–51.

    Article  CAS  PubMed  Google Scholar 

  46. Rouce RH, Louis CU, Heslop HE. Epstein-Barr virus lymphoproliferative disease after hematopoietic stem cell transplant. Curr Opin Hematol. 2014;21:476–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van der Heiden P, Marijt E, Falkenburg F, Jedema I. Control of cytomegalovirus viremia after allogeneic stem cell transplantation: a review on CMV-specific T cell reconstitution. Biology of blood and marrow transplantation. J Am Soc Blood aMarrow Transplant. 2018;24:1776–82.

  48. van der Heiden PLJ, van Egmond HM, Veld SAJ, van de Meent M, Eefting M, de Wreede LC, et al. CMV seronegative donors: effect on clinical severity of CMV infection and reconstitution of CMV-specific immunity. Transpl Immunol. 2018;49:54–8.

Download references

Acknowledgements

The authors thank patients, donors and medical staff involved in this clinical trial; Lisette Bogers and Susan Collins for excellent managing of clinical study data; Employees of the Laboratory for Stem Cell Therapy, Laboratory for Specialized Hematology and the Interdivisional GMP Facility of the LUMC for logistical, technical and GMP assistance. This study was financially supported by the European Union’s seventh Framework Program (FP/2007–2013) under grant agreement number 601722 and by Dutch Cancer Society grant UL 2008-4263.

Author information

Authors and Affiliations

Authors

Contributions

JHFF, IJ, CJMH, LCW, SD, and HE developed the clinical study concept; CJMH, PB, JHFF, HV, and MRS enrolled study participants and monitored patients clinically; EL, IJ, EE, and SAJV wrote the protocols for multi-antigen-specific T-cell product generation; JJZ was responsible for donor leukapheresis logistics and release; LG provided MHC-I-Streptamer technology equipment; PM was involved in GMP logistics and product release; LH, EE, SAJV, CH,EL, and MCJR generated multi-antigen-specific T-cell products and performed in-depth analysis of the T-cell products; PB, CJMH, and MCJR administered the T-cell products to the patients; LH, SAJV, MCJR, ACTMV, and IJ performed laboratory monitoring; PB, JHFF, CJMH, IJ, and MCJR collected clinical/laboratory follow-up data and performed analysis; LCW assisted with statistical analysis; MCJR, IJ, and JHFF wrote the manuscript; all authors reviewed the manuscript.

Corresponding author

Correspondence to Marthe C. J. Roex.

Ethics declarations

Conflict of interest

LG is senior vice president and managing director of Juno Therapeutics GmbH, a Celgene company (Munich, Germany). The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roex, M.C.J., van Balen, P., Germeroth, L. et al. Generation and infusion of multi-antigen-specific T cells to prevent complications early after T-cell depleted allogeneic stem cell transplantation—a phase I/II study. Leukemia 34, 831–844 (2020). https://doi.org/10.1038/s41375-019-0600-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0600-z

This article is cited by

Search

Quick links