Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The intestinal flora is required for post-transplant hematopoiesis in recipients of a hematopoietic stem cell transplantation

Abstract

Recent studies in both mice and humans have demonstrated that the intestinal microbiota can affect hematopoiesis. Here, we performed experiments in preclinical mouse models for syngeneic and allogeneic HCT. To study the metabolic effects of intestinal flora depletion on post-transplant hematopoiesis in humans, we performed HCT experiments using a metabolic chamber and bomb calorimetry of feces. Taken together, we show that the intestinal microbiota supports post-transplant hematopoietic reconstitution in HCT recipients through its role in dietary energy uptake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Balmer ML, Schurch CM, Saito Y, Geuking MB, Li H, Cuenca M, et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol. 2014;193:5273–83.

    Article  CAS  Google Scholar 

  2. Khosravi A, Yanez A, Price JG, Chow A, Merad M, Goodridge HS, et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe. 2014;15:374–81.

    Article  CAS  Google Scholar 

  3. Josefsdottir KS, Baldridge MT, Kadmon CS, King KY. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood. 2017;129:729–39.

    Article  CAS  Google Scholar 

  4. Iwamura C, Bouladoux N, Belkaid Y, Sher A, Jankovic D. Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood. 2017;129:171–6.

    Article  CAS  Google Scholar 

  5. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. 2010;16:228–31.

    Article  CAS  Google Scholar 

  6. Deshmukh HS, Liu Y, Menkiti OR, Mei J, Dai N, O’Leary CE, et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat Med. 2014;20:524–30.

    Article  CAS  Google Scholar 

  7. Tada T, Yamamura S, Kuwano Y, Abo T. Level of myelopoiesis in the bone marrow is influenced by intestinal flora. Cell Immunol. 1996;173:155–61.

    Article  CAS  Google Scholar 

  8. Inagaki H, Suzuki T, Nomoto K, Yoshikai Y. Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+CD44+T cells in sites of inflammation. Infect Immun. 1996;64:3280–7.

    Article  CAS  Google Scholar 

  9. Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525:528–32.

    Article  CAS  Google Scholar 

  10. Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595:489–503.

    Article  CAS  Google Scholar 

  11. Yan H, Baldridge MT, King KY. Hematopoiesis and the bacterial microbiome. Blood. 2018;132:559–64.

    Article  CAS  Google Scholar 

  12. Neftel KA, Hauser SP, Muller MR. Inhibition of granulopoiesis in vivo and in vitro by beta-lactam antibiotics. J Infect Dis. 1985;152:90–8.

    Article  CAS  Google Scholar 

  13. Staffas A, Burgos da Silva M, Slingerland AE, Lazrak A, Bare CJ, Holman CD, et al. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. Cell Host Microbe. 2018;23:447–57. e4

    Article  CAS  Google Scholar 

  14. Suarez-Zamorano N, Fabbiano S, Chevalier C, Stojanovic O, Colin DJ, Stevanovic A, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med. 2015;21:1497–501.

    Article  CAS  Google Scholar 

  15. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in clinical practice: official publication of the American Society for Parenteral and Enteral. Nutrition. 2012;27:201–14.

    Google Scholar 

  16. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–66.

    Article  CAS  Google Scholar 

Download references

Funding

Publication of this supplement was sponsored by Gilead Sciences Europe Ltd, Cell Source, Inc., The Chorafas Institute for Scientific Exchange of the Weizmann Institute of Science, Kiadis Pharma, Miltenyi Biotec, Celgene, Centro Servizi Congressuali, Almog Diagnostic.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Staffas or Marcel van den Brink.

Ethics declarations

Conflict of interest

MvdB received consulting fees from Seres Therapeutics, TTT Study Section, owns equity in Epiva & Evelo Theaputics, and received grant support from Seres Therapeutics, NIH, Susan and Peter Solomon Fund, and Parker Institute for Cancer Immunology. AS received grants from the Swedish research council (VR), the Swedish society for medical research (SSMF) and Assar Gabrielsson Foundation (AG Fond). There are no conflicts of interest to disclose.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staffas, A., van den Brink, M. The intestinal flora is required for post-transplant hematopoiesis in recipients of a hematopoietic stem cell transplantation. Bone Marrow Transplant 54 (Suppl 2), 756–758 (2019). https://doi.org/10.1038/s41409-019-0612-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0612-3

This article is cited by

Search

Quick links