Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical-scale production of Aspergillus-specific T cells for the treatment of invasive aspergillosis in the immunocompromised host

A Correction to this article was published on 20 June 2019

This article has been updated

Abstract

Invasive aspergillosis (IA) represents a leading cause of mortality in immunocompromised patients. Although adoptive immunotherapy with Aspergillus-specific T cells (Asp-STs) represents a promising therapeutic approach against IA, the complex and costly production limits its broader application. We generated Asp-STs from a single blood draw of healthy individuals or IA patients in only 10 days, by either Aspergillus fumigatus (AF) lysate or peptide stimulation of mononuclear cells. The cells were phenotypically and functionally characterized, and safety was assessed in xenografts. Healthy donor-derived and lysate- or peptide-pulsed Asp-STs presented comparable fold expansion, immunophenotype, and Th1 responses. Upon cross-stimulation, only the lysate-pulsed Asp-STs were empowered to respond to peptide stimulation, although both cell products induced hyphal damage. Importantly, Asp-STs cross-reacted with other fungal species and did not induce alloreactivity in vivo. IA patient-derived T cells displayed an anergic phenotype that prohibited sufficient expansion and yield of meaningful doses of Asp-STs for autologous immunotherapy. Using a rapid and simple process, we generated, from healthy donors but not IA patients, functionally active Asp-STs of broad specificity and at clinically relevant numbers. Such an approach may form the basis for the effective management of IA in the context of allogeneic hematopoietic cell transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 20 June 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50:1091–100.

    Article  PubMed  Google Scholar 

  2. Shoham S, Marr KA. Invasive fungal infections in solid organ transplant recipients. Future Microbiol. 2012;7:639–55.

    Article  CAS  PubMed  Google Scholar 

  3. Kumaresan PR, da Silva TA, Kontoyiannis DP. Methods of controlling invasive fungal infections using CD8+T cells. Front Immunol. 2017;8:1939.

    Article  PubMed  CAS  Google Scholar 

  4. Kontoyiannis DP. Antifungal prophylaxis in hematopoietic stem cell transplant recipients: the unfinished tale of imperfect success. Bone Marrow Transplant. 2011;46:165–73.

    Article  CAS  PubMed  Google Scholar 

  5. Marr KA. Fungal infections in hematopoietic stem cell transplant recipients. Med Mycol. 2008;46:293–302.

    Article  PubMed  Google Scholar 

  6. Kim A, Nicolau DP, Kuti JL. Hospital costs and outcomes among intravenous antifungal therapies for patients with invasive aspergillosis in the United States. Mycoses. 2011;54:e301–12.

    Article  PubMed  Google Scholar 

  7. Papadopoulou A, Kaloyannidis P, Yannaki E, Cruz CR. Adoptive transfer of Aspergillus-specific T cells as a novel anti-fungal therapy for hematopoietic stem cell transplant recipients: progress and challenges. Crit Rev Oncol Hematol. 2016;98:62–72.

    Article  PubMed  Google Scholar 

  8. Blyth E, Clancy L, Simms R, Ma CKK, Burgess J, Deo S, et al. Donor-derived CMV-specific T cells reduce the requirement for CMV-directed pharmacotherapy after allogeneic stem cell transplantation. Blood. 2013;121:3745–58.

    Article  CAS  PubMed  Google Scholar 

  9. Bollard CM, Heslop HE. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood. 2016;127:3331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet (Lond, Engl). 1995;345:9–13.

    Article  CAS  Google Scholar 

  11. Tzannou I, Papadopoulou A, Naik S, Leung K, Martinez CA, Ramos CA, et al. Off-the-shelf virus-specific T cells to treat BK virus, human Herpesvirus 6, cytomegalovirus, Epstein-Barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2017;35:3547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038–44.

    Article  CAS  PubMed  Google Scholar 

  13. Doubrovina E, Oflaz-Sozmen B, Prockop SE, Kernan NA, Abramson S, Teruya-Feldstein J, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119:2644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, Löffler J, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99:3916–22.

    Article  CAS  PubMed  Google Scholar 

  15. Feuchtinger T, Matthes-Martin S, Richard C, Lion T, Fuhrer M, Hamprecht K, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134:64–76.

    Article  PubMed  Google Scholar 

  16. Gerdemann U, Katari UL, Papadopoulou A, Keirnan JM, Craddock JA, Liu H, et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol Ther. 2013;21:2113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaloyannidis P, Leen AM, Papadopoulou A. T-cell therapy: a powerful tool for the management of viral infections and relapse post hematopoietic stem cell transplantation. Expert Rev Hematol. 2012;5:471–3.

    Article  CAS  PubMed  Google Scholar 

  18. Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12:1160–6.

    Article  CAS  PubMed  Google Scholar 

  19. Papadopoulou A, Gerdemann U, Katari UL, Tzannou I, Liu H, Martinez C et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med. 2014;6:242ra83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003;362:1375–7.

    Article  PubMed  Google Scholar 

  21. Perruccio K, Tosti A, Burchielli E, Topini F, Ruggeri L, Carotti A, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106:4397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerdemann U, Keirnan JM, Katari UL, Yanagisawa R, Christin AS, Huye LE, et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther. 2012;20:1622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46:1813–21.

    Article  PubMed  Google Scholar 

  24. Kumaresan PR, Manuri PR, Albert ND, Maiti S, Singh H, Mi T, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci USA. 2014;111:10660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Charan J, Kantharia N. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4:303.

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Winter JCF. ERIC - using the Student’s ‘t’-test with extremely small sample sizes.Pract Assess Res Eval. v18 n10. 2013. https://eric.ed.gov/?id=EJ1015748.

  27. Khanna N, Stuehler C, Conrad B, Lurati S, Krappmann S, Einsele H, et al. Generation of a multipathogen-specific T-cell product for adoptive immunotherapy based on activation-dependent expression of CD154. Blood. 2011;118:1121–31.

    Article  CAS  PubMed  Google Scholar 

  28. Foster AE, Marangolo M, Sartor MM, Alexander SI, Hu M, Bradstock KF, et al. Human CD62L- memory T cells are less responsive to alloantigen stimulation than CD62L+naive T cells: potential for adoptive immunotherapy and allodepletion. Blood. 2004;104:2403–9.

    Article  CAS  PubMed  Google Scholar 

  29. Corzo-León DE, Satlin MJ, Soave R, Shore TB, Schuetz AN, Jacobs SE, et al. Epidemiology and outcomes of invasive fungal infections in allogeneic haematopoietic stem cell transplant recipients in the era of antifungal prophylaxis: a single-centre study with focus on emerging pathogens. Mycoses. 2015;58:325–36.

    Article  PubMed  Google Scholar 

  30. Wurster S, Weis P, Page L, Helm J, Lazariotou M, Einsele H, et al. Intra- and inter-individual variability of Aspergillus fumigatus reactive T-cell frequencies in healthy volunteers in dependency of mould exposure in residential and working environment. Mycoses. 2017;60:668–75.

    Article  CAS  PubMed  Google Scholar 

  31. van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé J-P. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol. 2017;15:661–74.

    Article  PubMed  CAS  Google Scholar 

  32. Stephen-Victor E, Karnam A, Fontaine T, Beauvais A, Das M, Hegde P, et al. Aspergillus fumigatus cell wall α-(1,3)-glucan stimulates regulatory T-cell polarization by inducing PD-L1 expression on human dendritic cells. J Infect Dis. 2017;216:1281–94.

    Article  CAS  PubMed  Google Scholar 

  33. Cenci E, Mencacci A, Bacci A, Bistoni F, Kurup VP, Romani L. T cell vaccination in mice with invasive pulmonary aspergillosis. J Immunol. 2000;165:381–8.

    Article  CAS  PubMed  Google Scholar 

  34. Bacher P, Jochheim-Richter A, Mockel-Tenbrink N, Kniemeyer O, Wingenfeld E, Alex R, et al. Clinical-scale isolation of the total Aspergillus fumigatus-reactive T-helper cell repertoire for adoptive transfer. Cytotherapy. 2015;17:1396–405.

    Article  CAS  PubMed  Google Scholar 

  35. Deo SS, Virassamy B, Halliday C, Clancy L, Chen S, Meyer W, et al. Stimulation with lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae maximizes cross-reactivity of anti-fungal T cells. Cytotherapy. 2016;18:65–79.

    Article  CAS  PubMed  Google Scholar 

  36. Gaundar SS, Clancy L, Blyth E, Meyer W, Gottlieb DJ. Robust polyfunctional T-helper 1 responses to multiple fungal antigens from a cell population generated using an environmental strain of Aspergillus fumigatus. Cytotherapy. 2012;14:1119–30.

    Article  CAS  PubMed  Google Scholar 

  37. Tramsen L, Schmidt S, Boenig H, Latgé J-P, Lass-Flörl C, Roeger F, et al. Clinical-scale generation of multi-specific anti-fungal T cells targeting Candida, Aspergillus and mucormycetes. Cytotherapy. 2013;15:344–51.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu F, Ramadan G, Davies B, Margolis DA, Keever-Taylor CA. Stimulation by means of dendritic cells followed by Epstein-Barr virus-transformed B cells as antigen-presenting cells is more efficient than dendritic cells alone in inducing Aspergillus f16-specific cytotoxic T cell responses. Clin Exp Immunol. 2008;151:284–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramadan G, Davies B, Kurup VP, Keever-Taylor CA. Generation of cytotoxic T cell responses directed to human leucocyte antigen Class I restricted epitopes from the Aspergillus f16 allergen. Clin Exp Immunol. 2005;140:81–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stuehler C, Nowakowska J, Bernardini C, Topp MS, Battegay M, Passweg J, et al. Multispecific Aspergillus T cells selected by CD137 or CD154 induce protective immune responses against the most relevant mold infections. J Infect Dis. 2015;211:1251–61. https://doi.org/10.1093/infdis/jiu607.

    Article  PubMed  CAS  Google Scholar 

  41. Bozza S, Clavaud C, Giovannini G, Fontaine T, Beauvais A, Sarfati J, et al. Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination. J Immunol. 2009;183:2407–14.

    Article  CAS  PubMed  Google Scholar 

  42. Bacher P, Kniemeyer O, Teutschbein J, Thön M, Vödisch M, Wartenberg D, et al. Identification of immunogenic antigens from Aspergillus fumigatus by direct multiparameter characterization of specific conventional and regulatory CD4+T cells. J Immunol. 2014;193:3332–43.

    Article  CAS  PubMed  Google Scholar 

  43. Beck O, Topp MS, Koehl U, Roilides E, Simitsopoulou M, Hanisch M, et al. Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood. 2006;107:2562–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tramsen L, Koehl U, Tonn T, Latgé J-P, Schuster FR, Borkhardt A, et al. Clinical-scale generation of human anti-Aspergillus T cells for adoptive immunotherapy. Bone Marrow Transplant. 2009;43:13–9.

    Article  CAS  PubMed  Google Scholar 

  45. Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11:275–88.

    Article  CAS  PubMed  Google Scholar 

  46. Nanjappa SG, Heninger E, Wüthrich M, Sullivan T, Klein B. Protective antifungal memory CD8(+) T cells are maintained in the absence of CD4( + ) T cell help and cognate antigen in mice. J Clin Invest. 2012;122:987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carvalho A, De Luca A, Bozza S, Cunha C, D’Angelo C, Moretti S, et al. TLR3 essentially promotes protective class I-restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood. 2012;119:967–77.

    Article  CAS  PubMed  Google Scholar 

  48. Potenza L, Vallerini D, Barozzi P, Riva G, Forghieri F, Beauvais A, et al. Characterization of specific immune responses to different Aspergillus antigens during the course of invasive Aspergillosis in hematologic patients. PLoS ONE 2013;8:e74326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith C, Beagley L, Rehan S, Neller MA, Crooks P, Solomon M, et al. Autologous adoptive T-cell therapy for recurrent or drug-resistant cytomegalovirus complications in solid organ transplant recipients: a single-arm open-label phase I clinical trial. Clin Infect Dis. 2019;68:632–40. https://doi.org/10.1093/cid/ciy549.

    Article  Google Scholar 

  50. Stanzani M, Orciuolo E, Lewis R, Kontoyiannis DP, Martins SLR, St, John LS, et al. Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood. 2005;105:2258–65.

    Article  CAS  PubMed  Google Scholar 

  51. Campanelli AP, Martins GA, Souto JT, Pereira MSF, Livonesi MC, Martinez R, et al. Fas‐Fas ligand (CD95‐CD95L) and cytotoxic T lymphocyte antigen–4 engagement mediate T cell unresponsiveness in patients with paracoccidioidomycosis. J Infect Dis. 2003;187:1496–505.

    Article  CAS  PubMed  Google Scholar 

  52. Chang KC, Burnham C-A, Compton SM, Rasche DP, Mazuski R, SMcDonough J, et al. Blockade ofthe negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care. 2013;17:R85.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Daver N, Kontoyiannis DP. Checkpoint inhibitors and aspergillosis in AML: the double hit hypothesis. Lancet Oncol. 2017;18:1571–3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Greek State Scholarships Foundation, IKY fellowships of excellence for postdoctoral studies in Greece-SIEMENS program. Funding for this project was provided in part by an advanced EHA (European Hematology Association) Research Grant award and by a fellowship of excellence for postdoctoral studies from the Greek State Scholarships Foundation (IKY, SIEMENS program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Papadopoulou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadopoulou, A., Alvanou, M., Koukoulias, K. et al. Clinical-scale production of Aspergillus-specific T cells for the treatment of invasive aspergillosis in the immunocompromised host. Bone Marrow Transplant 54, 1963–1972 (2019). https://doi.org/10.1038/s41409-019-0501-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0501-9

This article is cited by

Search

Quick links