Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

PAX5, NOTCH3, CBFB, and ACD drive an activated RAS pathway and monosomy 7 to B-ALL and AML in donor cell leukemia

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Denk D, Bradtke J, Konig M, Strehl S. PAX5 fusion genes in t(7;9)(q11.2;p13) leukemia: a case report and review of the literature. Mol Cytogenet. 2014;7:13 https://doi.org/10.1186/1755-8166-7-13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Denk D, Nebral K, Bradtke J, Pass G, Moricke A, Attarbaschi A, et al. PAX5-AUTS2: a recurrent fusion gene in childhood B-cell precursor acute lymphoblastic leukemia. Leuk Res. 2012;36:e178–181. https://doi.org/10.1016/j.leukres.2012.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coyaud E, Struski S, Dastugue N, Brousset P, Broccardo C, Bradtke J. PAX5-AUTS2 fusion resulting from t(7;9)(q11.2; p13.2) can now be classified as recurrent in B cell acute lymphoblastic leukemia. Leuk Res. 2010;34:e323–325. https://doi.org/10.1016/j.leukres.2010.07.035

    Article  CAS  PubMed  Google Scholar 

  4. Huret J. t(7;9)(q11; p12) PAX5/POM121. Atlas Genet Cytogenet Oncol Haematol. 2014;18:856–8.

    Google Scholar 

  5. Bousquet M, Broccardo C, Quelen C, Meggetto F, Kuhlein E, Delsol G, et al. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood. 2007;109:3417–23. https://doi.org/10.1182/blood-2006-05-025221.

    Article  CAS  PubMed  Google Scholar 

  6. Stasevich I, Inglott S, Austin N, Chatters S, Chalker J, Addy D, et al. PAX5 alterations in genetically unclassified childhood precursor B-cell acute lymphoblastic leukaemia. Br J Haematol. 2015;171:263–72. https://doi.org/10.1111/bjh.13543

    Article  CAS  PubMed  Google Scholar 

  7. Coyaud E, Struski S, Prade N, Familiades J, Eichner R, Quelen C, et al. Wide diversity of PAX5 alterations in B-ALL: a Groupe Francophone de Cytogenetique Hematologique study. Blood. 2010;115:3089–97. https://doi.org/10.1182/blood-2009-07-234229

    Article  CAS  PubMed  Google Scholar 

  8. Nebral K, Denk D, Attarbaschi A, Konig M, Mann G, Haas OA, et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia. 2009;23:134–43. https://doi.org/10.1038/leu.2008.306

    Article  CAS  PubMed  Google Scholar 

  9. Liao YC, Hsiao CT, Fuh JL, Chern CM, Lee WJ, Guo YC, et al. Characterization of CADASIL among the Han Chinese in Taiwan: distinct genotypic and phenotypic profiles. PLoS One. 2015;10:e0136501 https://doi.org/10.1371/journal.pone.0136501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137:216–33. https://doi.org/10.1016/j.cell.2009.03.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pelullo M, Quaranta R, Talora C, Checquolo S, Cialfi S, Felli MP, et al. Notch3/Jagged1 circuitry reinforces notch signaling and sustains T-ALL. Neoplasia. 2014;16:1007–17. https://doi.org/10.1016/j.neo.2014.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, et al. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 2014;42(Database issue):D336–346. https://doi.org/10.1093/nar/gkt1144.

    Article  CAS  PubMed  Google Scholar 

  13. Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinforma. 2006;7:339 https://doi.org/10.1186/1471-2105-7-339.

    Article  CAS  Google Scholar 

  14. Else T, Theisen BK, Wu Y, Hutz JE, Keegan CE, Hammer GD, et al. Tpp1/Acd maintains genomic stability through a complex role in telomere protection. Chromosome Res. 2007;15:1001–13. https://doi.org/10.1007/s10577-007-1175-5.

    Article  CAS  PubMed  Google Scholar 

  15. Vlangos CN, O’Connor BC, Morley MJ, Krause AS, Osawa GA, Keegan CE. Caudal regression in adrenocortical dysplasia (acd) mice is caused by telomere dysfunction with subsequent p53-dependent apoptosis. Dev Biol. 2009;334:418–28. https://doi.org/10.1016/j.ydbio.2009.07.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo Y, Kartawinata M, Li J, Pickett HA, Teo J, Kilo T, et al. Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. Blood. 2014;124:2767–74. https://doi.org/10.1182/blood-2014-08-596445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kocak H, Ballew BJ, Bisht K, Eggebeen R, Hicks BD, Suman S, et al. Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes Dev. 2014;28:2090–102. https://doi.org/10.1101/gad.248567.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spinella JF, Cassart P, Garnier N, Rousseau P, Drullion C, Richer C, et al. A novel somatic mutation in ACD induces telomere lengthening and apoptosis resistance in leukemia cells. BMC Cancer. 2015;15:621 https://doi.org/10.1186/s12885-015-1639-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller J, Horner A, Stacy T, Lowrey C, Lian JB, Stein G, et al. The core-binding factor beta subunit is required for bone formation and hematopoietic maturation. Nat Genet. 2002;32:645–9. https://doi.org/10.1038/ng1049.

    Article  CAS  PubMed  Google Scholar 

  20. Wang CQ, Chin DW, Chooi JY, Chng WJ, Taniuchi I, Tergaonkar V, et al. Cbfb deficiency results in differentiation blocks and stem/progenitor cell expansion in hematopoiesis. Leukemia. 2015;29:753–7. https://doi.org/10.1038/leu.2014.316.

    Article  CAS  PubMed  Google Scholar 

  21. Xiao H, Shi J, Luo Y, Tan Y, He J, Xie W, et al. First report of multiple CEBPA mutations contributing to donor origin of leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood. 2011;117:5257–60. https://doi.org/10.1182/blood-2010-12-326322.

    Article  CAS  PubMed  Google Scholar 

  22. Yasuda T, Ueno T, Fukumura K, Yamato A, Ando M, Yamaguchi H, et al. Leukemic evolution of donor-derived cells harboring IDH2 and DNMT3A mutations after allogeneic stem cell transplantation. Leukemia. 2014;28:426–8. https://doi.org/10.1038/leu.2013.278.

    Article  CAS  PubMed  Google Scholar 

  23. Kalra R, Dale D, Freedman M, Bonilla MA, Weinblatt M, Ganser A, et al. Monosomy 7 and activating RAS mutations accompany malignant transformation in patients with congenital neutropenia. Blood. 1995;86:4579–86.

    CAS  PubMed  Google Scholar 

  24. Neubauer A, Shannon K, Liu E. Mutations of the ras proto-oncogenes in childhood monosomy 7. Blood. 1991;77:594–8.

    CAS  PubMed  Google Scholar 

  25. Wiseman DH, Das M, Poulton K, Liakopoulou E. Donor cell leukemia following unrelated donor bone marrow transplantation for primary granulocytic sarcoma of the small intestine. Am J Hematol. 2011;86:315–8. https://doi.org/10.1002/ajh.21938.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bazarbachi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assi, R., Mahfouz, R., Owen, R. et al. PAX5, NOTCH3, CBFB, and ACD drive an activated RAS pathway and monosomy 7 to B-ALL and AML in donor cell leukemia. Bone Marrow Transplant 54, 1124–1128 (2019). https://doi.org/10.1038/s41409-018-0419-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-018-0419-7

This article is cited by

Search

Quick links