Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers

Abstract

Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1–10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequence analysis and structure of human FZDs and the binding pattern of haXWnt8–mFzd8CRD–hLRP6E1E2 (PDB code 8CTG).
Fig. 2: Canonical Wnt/FZD signal transduction.
Fig. 3: Non-canonical WNT pathways.

Similar content being viewed by others

References

  1. Schulte G, Wright SC. Frizzleds as GPCRs—more conventional than we thought! Trends Pharmacol Sci. 2018;39:828–42.

    Article  CAS  PubMed  Google Scholar 

  2. Schulte G, Kozielewicz P. Structural insight into class F receptors—what have we learnt regarding agonist-induced activation? Basic Clin Pharmacol Toxicol. 2020;126:17–24.

    Article  CAS  PubMed  Google Scholar 

  3. Schulte G. International union of basic and clinical pharmacology. LXXX. The class frizzled receptors. Pharmacol Rev. 2010;62:632–67.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Liu ZL, Jia JH. Mechanisms of smoothened regulation in hedgehog signaling. Cells. 2021;10:2138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang YX, Beachy PA. Cellular and molecular mechanisms of hedgehog signalling. Nat Rev Mol Cell Biol. 2023;24:668–87.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol. 2022;85:107–22.

    Article  CAS  PubMed  Google Scholar 

  7. Hirai H, Matoba K, Mihara E, Arimori T, Takagi J. Crystal structure of a mammalian wnt-frizzled complex. Nat Struct Mol Biol. 2019;26:372–9.

    Article  CAS  PubMed  Google Scholar 

  8. Parsons MJ, Tammela T, Dow LE. Wnt as a sriver and dependency in cancer. Cancer Discov. 2021;11:2413–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shaw HV, Koval A, Katanaev VL. A high-throughput assay pipeline for specific targeting of frizzled GPCRs in cancer. Methods Cell Biol. 2019;149:57–75.

    Article  CAS  PubMed  Google Scholar 

  10. Albrecht LV, Tejeda-Muñoz N, De Robertis EM. Cell biology of canonical wnt signaling. Annu Rev Cell Dev Biol. 2021;37:369–89.

    Article  CAS  PubMed  Google Scholar 

  11. Rim EY, Clevers H, Nusse R. The wnt pathway: from signaling mechanisms to synthetic modulators. Annu Rev Biochem. 2022;91:571–98.

    Article  CAS  PubMed  Google Scholar 

  12. Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene. 2002;21:6598–605.

    Article  CAS  PubMed  Google Scholar 

  13. Zeng CM, Chen Z, Fu L. Frizzled receptors as potential therapeutic targets in human cancers. Int J Mol Sci. 2018;19:1543.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nichols AS, Floyd DH, Bruinsma SP, Narzinski K, Baranski TJ. Frizzled receptors signal through G proteins. Cell Signal. 2013;25:1468–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Umar SA, Dong B, Nihal M, Chang H. Frizzled receptors in melanomagenesis: from molecular interactions to target identification. Front Oncol. 2022;12:1096134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schenkelaars Q, Fierro-Constrain L, Renard E, Hill AL, Borchiellini C. Insights into frizzled evolution and new perspectives. Evol Dev. 2015;17:160–9.

    Article  CAS  PubMed  Google Scholar 

  17. Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM, Miao Y, et al. Structure of human frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. Elife. 2020;9:e58464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mieszczanek J, Strutt H, Rutherford TJ, Strutt D, Bienz M, Gammons MV. Selective function of the PDZ domain of dishevelled in noncanonical wnt signalling. J Cell Sci. 2022;135:259547.

    Article  Google Scholar 

  19. Beitia GJ, Rutherford TJ, Freund SMV, Pelham HR, Bienz M, Gammons MV. Regulation of dishevelled DEP domain swapping by conserved phosphorylation sites. Proc Natl Acad Sci USA. 2021;118:e2103258118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Babcock RL, Pruitt K. Letting go: Dishevelled phase separation recruits Axin to stabilize β-catenin. J Cell Biol. 2022;221:e202211001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsieh JC, Rattner A, Smallwood PM, Nathans J. Biochemical characterization of wnt-frizzled interactions using a soluble, biologically active vertebrate wnt protein. Proc Natl Acad Sci USA. 1999;96:3546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. MacDonald BT, He X. Frizzled and LRP5/6 Receptors for wnt/β-catenin signaling. Cold Spring Harb Perspect Biol. 2012;4:a007880.

    Article  PubMed  PubMed Central  Google Scholar 

  23. González-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AMC. Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize β-catenin. Mol Cell Biol. 2004;24:4757–68.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu CH, Nusse R. Ligand receptor interactions in the wnt signaling pathway in Drosophila. J Biol Chem. 2005;280:31340.

    Article  CAS  Google Scholar 

  25. Tsutsumi N, Hwang S, Waghray D, Hansen S, Jude KM, Wang N, et al. Structure of the wnt-frizzled-LRP6 initiation complex reveals the basis for coreceptor discrimination. Proc Natl Acad Sci USA. 2023;120:e2218238120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Logan CY, Nusse R. The wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:81–810.

    Article  Google Scholar 

  27. Galluzzi L, Spranger S, Fuchs E, López-Soto A. Wnt signaling in cancer immunosurveillance. Trends Cell Biol. 2019;29:44–65.

    Article  CAS  PubMed  Google Scholar 

  28. Wang YS, Chang H, Rattner A, Nathans J. Frizzled receptors in development and disease. Essays Dev Biol. 2016;117:113–39.

    Article  Google Scholar 

  29. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  30. Peifer M, Polakis P. Cancer-wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science. 2000;287:1606–9.

    Article  CAS  PubMed  Google Scholar 

  31. Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol. 2017;18:375–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thrasivoulou C, Millar M, Ahmed A. Activation of intracellular calcium by multiple wnt ligands and translocation of β-catenin into the nucleu. J Biol Chem. 2013;288:35651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiao Q, Chen ZX, Jin XZ, Mao RY, Chen ZQ. The many postures of noncanonical wnt signaling in development and diseases. Biomed Pharmacother. 2017;93:359–69.

    Article  CAS  PubMed  Google Scholar 

  34. González P, González-Fernández C, Campos-Martín Y, Mollejo M, Carballosa-Gautam M, Marcillo A, et al. Frizzled 1 and wnt1 as new potential therapeutic targets in the traumatically injured spinal cord. Cell Mol Life Sci. 2020;7:4631–62.

    Article  Google Scholar 

  35. Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, et al. The wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the wnt/β-catenin pathway. Oncogene. 2009;28:2245–56.

    Article  CAS  PubMed  Google Scholar 

  36. Su WM, Mo YL, Wu FP, Guo KG, Li JM, Luo YP, et al. MiR-135b reverses chemoresistance of non-small cell lung cancer cells by downregulation of FZD1. Biomed Pharmacother. 2016;84:123–9.

    Article  CAS  PubMed  Google Scholar 

  37. Yang LL, Yang ZL, Li DQ, Li ZR, Zou Q, Yuan Y, et al. Overexpression of FZD1 and CAIX are associated with invasion, metastasis, and poor-prognosis of the pancreatic ductal adenocarcinoma. Pathol Oncol Res. 2018;24:899–906.

    Article  CAS  PubMed  Google Scholar 

  38. Peng Q, Wang L, Zhao DF, Lv YL, Wang HZ, Chen G, et al. Overexpression of FZD1 is associated with a good prognosis and resistance of sunitinib in clear cell renal cell carcinoma. J Cancer. 2019;10:1237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang YH, Lmai Y, Shiseki M, Tanaka J, Motoji T. Knockdown of the wnt receptor frizzled-1 (FZD1) reduces MDR1/P-glycoprotein expression in multidrug resistant leukemic cells and inhibits leukemic cell proliferation. Leuk Res. 2018;67:99–108.

    Article  CAS  PubMed  Google Scholar 

  40. Hung TH, Chen CM, Tseng CP, Shen CJ, Wang HL, Choo KB, et al. FZD1 activates protein kinase C delta-mediated drug resistance in multidrug-resistant MES-SA/Dx5 cancer cells. Int J Biochem Cell Biol. 2014;53:55–65.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Jing XX, Wu XJ, Hu J, Zhang XF, Wang X, et al. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes. Anti-Cancer Drugs. 2015;26:706–15.

    Article  CAS  PubMed  Google Scholar 

  42. Liu ZJ, Sun LC, Cai YP, Shen SQ, Zhang T, Wang NN, et al. Hypoxia-induced suppression of alternative splicing of MBD2 promotes breast cancer metastasis via activation of FZD1. Cancer Res. 2021;81:1265–78.

    Article  CAS  PubMed  Google Scholar 

  43. Sun JG, Li XB, Yin RH, Li XF. lncRNA VIM-AS1 promotes cell proliferation, metastasis and epithelial-mesenchymal transition by activating the wnt/β-catenin pathway in gastric cancer. Mol Med Rep. 2020;22:4567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jia F, Zhang LX, Jiang ZY, Tan GW, Wang ZX. FZD1/KLF10-hsa-miR-4762-5p/miR-224-3p-circular RNAs axis as prognostic biomarkers and therapeutic targets for glioblastoma: a comprehensive report. BMC Med Genomics. 2023;16:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ludwig K, Tse ES, Wang JYJ. Colon cancer cells adopt an invasive phenotype without mesenchymal transition in 3-D but not 2-D culture upon combined stimulation with EGF and crypt growth factors. BMC Cancer. 2013;13:221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW, Macbeath G. A noncanonical frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Mol Biol Cell. 2014;159:844–56.

    CAS  Google Scholar 

  47. Yin P, Wang W, Gao J, Bai Y, Wang Z, Na L, et al. Fzd2 contributes to breast cancer cell mesenchymal-like stemness and drug resistance. Oncol Res. 2020;28:273–84.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang EJ, Li ZN, Xu ZF, Duan WY, Sun CF, Lu L. Frizzled2 mediates the migration and invasion of human oral squamous cell carcinoma cells through the regulation of the signal transducer and activator of transcription-3 signaling pathway. Oncol Rep. 2015;34:3061–7.

    Article  CAS  PubMed  Google Scholar 

  49. Fu YF, Zheng Q, Mao YY, Jiang XY, Chen X, Liu P, et al. Wnt2-Mediated FZD2 stabilization regulates esophageal cancer metastasis via STAT3 signaling. Front Oncol. 2020;10:1168.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Luo M, Zhou L, Zhan SJ, Cheng LJ, Li RN, Wang H, et al. ALPL regulates the aggressive potential of high grade serous ovarian cancer cells via a non-canonical wnt pathway. Biochem Biophys Res Commun. 2019;513:528–33.

    Article  CAS  PubMed  Google Scholar 

  51. Asano T, Yamada S, Fuchs BC, Takami H, Hayashi M, Sugimoto H, et al. Clinical implication of frizzled 2 expression and its association with epithelial-to-mesenchymal transition in hepatocellular carcinoma. Int J Oncol. 2017;50:1647–54.

    Article  CAS  PubMed  Google Scholar 

  52. Nath D, Li X, Mondragon C. Post Dawn, Chen M, White JR, et al. Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical wnt signaling. Cell Commun Signal. 2019;17:120.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bian YD, Chang XW, Liao Y, Wang JY, Li YR, Wang K, et al. Promotion of epithelial-mesenchymal transition by frizzled2 is involved in the metastasis of endometrial cancer. Oncol Rep. 2016;36:803–10.

    Article  CAS  PubMed  Google Scholar 

  54. Golkowski M, Lau HT, Chan M, Kenerson H, Vidadala VN, Shoemaker A, et al. Pharmacoproteomics identifies kinase pathways that drive the epithelial-mesenchymal transition and drug resistance in hepatocellular carcinoma. Cell Syst. 2020;11:196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ning S, Liu CF, Lou W, Yang JC, Lombard AP, D’Abronzo LS, et al. Bioengineered BERA-Wnt5a siRNA targeting Wnt5a/FZD2 signaling suppresses advanced prostate cancer tumor growth and enhances enzalutamide treatment. Mol Cancer Ther. 2022;21:1594–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ding LC, Huang XY, Zheng FF, Xie J, She L, Feng Y, et al. FZD2 inhibits the cell growth and migration of salivary adenoid cystic carcinomas. Oncol Rep. 2016;35:1006–12.

    Article  CAS  PubMed  Google Scholar 

  57. Hua ZL, Jeon S, Caterina MJ, Nathans J. Frizzeld3 is required for the development of multiple axon tracts in the mouse central nervous system. Proc Natl Acad Sci USA. 2014;111:E3005–3014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li C, Nguyen V, Clark KN, Zahed T, Sharkas S, Filipp FV, et al. Down-regulation of FZD3 receptor suppresses growth and metastasis of human melanoma independently of canonical wnt signaling. Proc Natl Acad Sci USA. 2019;116:4548–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang A, Wang Y, Zhan J, Chen J. MicroRNA-186-5p inhibits the metastasis of cervical cancer by targeting FZD3. J Buon. 2021;26:677–83.

    PubMed  Google Scholar 

  60. Feng L, Zheng H, Zhang HP, Cao MX, Zhou H. LncRNA FGD5-AS1 drives the malignant development of gastric cancer by negatively interacting with FZD3. Pol J Pathol. 2022;73:72–9.

    Article  PubMed  Google Scholar 

  61. Meng ZF, Liu Q, Liu YF, Yang YM, Shao CF, Zhang SQ. Frizzled-3 suppression overcomes multidrug chemoresistance by wnt/β-catenin signaling pathway inhibition in hepatocellular carcinoma cells. J Chemother. 2023;35:653–61.

    Article  CAS  PubMed  Google Scholar 

  62. Yao WJ, Wang JJ, Meng FR, Zhu ZB, Jia XB, Lei X, et al. Circular RNA circPVT1 inhibits 5-fluorouracil chemosensitivity by regulating ferroptosis through miR-30a-5p/FZD3 axis in esophageal cancer cells. Front Oncol. 2021;11:780938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu D, Zhao YD, Tawatao R, Cottam HB, Sen M, Leoni LM, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2004;101:3118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu GQ, Wang Y, Wang B, Liu WR, Dong SS, Chen EB, et al. Targeting HNRNPM inhibits cancer stemness and enhances antitumor immunity in wnt-activated hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 2022;13:1413–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiang M, Huang YQ, Dai CJ, Zou GD. MiR-340 regulates the growth and metabolism of renal cell carcinoma cells by targeting frizzled class receptor 3. Arch Pharm Res. 2021;44:219–29.

    Article  CAS  PubMed  Google Scholar 

  66. Robitaille J, MacDonald MLE, Kaykas A, Sheldahl LC. Zeisler Jutta, Dubé MP, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet. 2002;32:326–30.

    Article  CAS  PubMed  Google Scholar 

  67. Descamps B, Sewduth R, Tojais NF, Jaspard B, Reynaud A, Sohet F, et al. Frizzled 4 regulates arterial network organization through noncanonical wnt/planar cell polarity signaling. Circ Res. 2012;110:47–58.

    Article  CAS  PubMed  Google Scholar 

  68. Feng ZH, Zheng L, Yao T, Tao SY, Wei XA, Zheng ZY, et al. EIF4A3-induced circular RNA PRKAR1B promotes osteosarcoma progression by miR-361-3p-mediated induction of FZD4 expression. Cell Death Dis. 2021;12:1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xiang DM, Gu MY, Liu JY, Dong W, Yang ZS, Wang K, et al. m6A RNA methylation-mediated upregulation of HLF promotes intrahepatic cholangiocarcinoma progression by regulating the FZD4/β-catenin signaling pathway. Cancer Lett. 2023;560:216144.

    Article  CAS  PubMed  Google Scholar 

  70. Jin X, Jeon HY, Joo KM, Kim JK, Jin JY, Kim SH, et al. Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation. Cancer Res. 2011;71:3066–75.

    Article  CAS  PubMed  Google Scholar 

  71. Ohlmann A, Tamm ER. Norrin: molecular and functional properties of an angiogenic and neuroprotective growth factor. Prog Retinal Eye Res. 2012;1:243–57.

    Article  Google Scholar 

  72. Paes KT, Wang E, Henze K, Vogel P, Read R, Suwanichkul A, et al. Frizzled 4 is required for retinal angiogenesis and maintenance of the blood-retina barrier. Invest Ophthalmol Vis Sci. 2011;52:6452–61.

    Article  CAS  PubMed  Google Scholar 

  73. Planutis K, Planutiene M, Holcombe RF. A novel signaling pathway regulates colon cancer angiogenesis through Norrin. Sci Rep. 2014;4:5630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gyanchandani R, Alves MVO, Myers JN, Kim S. A proangiogenic signature is revealed in FGF-mediated bevacizumab-resistant head and neck squamous cell carcinoma. Mol Cancer Res. 2013;11:1585–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen TL, Zhang FB, Liu J, Huang ZL, Zheng YF, Deng SK, et al. Dual role of wnt5a in promoting endothelial differentiation of glioma stem cells and angiogenesis of glioma derived endothelial cells. Oncogene. 2021;40:5081–94.

    Article  CAS  PubMed  Google Scholar 

  76. Li X, Lv JX, Hou LY, Guo XF. Circ0001955 acts as a miR-646 sponge to promote the proliferation, metastasis and angiogenesis of hepatocellular carcinoma. Digest Dis Sci. 2022;67:2257–68.

    Article  CAS  PubMed  Google Scholar 

  77. Sun Y, Wang Z, Na L, Dong D, Wang W, Zhao CH. FZD5 contributes to TNBC proliferation, DNA damage repair and stemness. Cell Death Dis. 2020;11:1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Na L, Wang Z, Bai Y, Sun Y, Dong D, Wang W, et al. WNT7B represses epithelial-mesenchymal transition and stem-like properties in bladder urothelial carcinoma. Biochim Biophys Acta-Mol Basis Dis. 2022;1868:166271.

    Article  CAS  PubMed  Google Scholar 

  79. Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med. 2017;23:60–8.

    Article  CAS  PubMed  Google Scholar 

  80. Brandt MM, Dijk CGMV, Chrifi I, et al. L, et al. Endothelial loss of Fzd5 stimulates PKC/Ets1-mediated transcription of Angpt2 and Flt1. Angiogenesis. 2018;21:805–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wan X, Guan SD, Hou YX, Qin YL, Zeng H, Yang LP, et al. FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts. Theranostics. 2022;12:6157–8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Peterson YK, Nasarre P. Bonilla IV, Hilliard E, Samples J, Morinelli TA, et al. Frizzled-5: a high-affinity receptor for secreted frizzled-related protein-2 activation of nuclear factor of activated T-cells c3 signaling to promote angiogenesis. Angiogenesis. 2017;20:615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dong D, Na L, Zhou K, Wang Z, Sun Y, Zheng Q, et al. FZD5 prevents epithelial-mesenchymal transition in gastric cancer. Cell Commun Signal. 2021;19:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Corda G, Sala A. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis. 2017;6:e364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang DN, Ma SC, Zhang CB, Li PL, Mao BB, Guan XD, et al. MicroRNA-935 directly targets FZD6 to inhibit the proliferation of human glioblastoma and correlate to glioma malignancy and prognosis. Front Oncol. 2021;11:566492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bowin CF, Kozielewicz P, Grätz L, Kowalski-Jahn M, Schihada H, Schulte G. WNT stimulation induces dynamic conformational changes in the Frizzled-Dishevelled interaction. Sci Signal. 2023;16:e4974.

    Article  Google Scholar 

  87. Dong B. FZD6 promotes melanoma cell invasion but not proliferation by regulating canonical wnt signaling and epithelial‒mesenchymal transition. J Invest Dermatol. 2023;143:621–9.

    Article  CAS  PubMed  Google Scholar 

  88. Zhan YH, Zhang LH, Yu SB, Wen JG, Liu YC, Zhang XP. Long non-coding RNA CASC9 promotes tumor growth and metastasis via modulating FZD6/Wnt/β-catenin signaling pathway in bladder cancer. J Exp Clin Cancer Res. 2020;39:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun S, Wang J, Liu J, Yin F, Xin C, Zeng X, et al. MiR-302b suppresses tumor metastasis by targeting frizzled 6 in OSCC. J Dent Res. 2021;100:739–45.

    Article  CAS  PubMed  Google Scholar 

  90. Kim BK, Yoo HI, Kim IJ, Park JK, Yoon SK. FZD6 expression is negatively regulated by miR-199a-5p in human colorectal cancer. BMB Rep. 2015;48:360–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 2017;241:350–61.

    Article  CAS  PubMed  Google Scholar 

  92. Yuan Y, Wang Q, Ma SL, Xu LQ, Liu MY, Han B, et al. lncRNA PCAT-1 interacting with FZD6 contributes to the malignancy of acute myeloid leukemia cells through activating Wnt/β-catenin signaling pathway. Am J Transl Res. 2019;11:7104–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang J, Wang JL, Zhang CY, Ma YF, Zhao R, Wang YY. The prognostic role of FZD6 in esophageal squamous cell carcinoma patients. Clin Transl Oncol. 2020;22:1172–9.

    Article  CAS  PubMed  Google Scholar 

  94. Chen ZZ, Gao YF, Yao LT, Liu YT, Huang L, Yan ZY, et al. LncFZD6 initiates Wnt/β-catenin and liver TIC self-renewal through BRG1-mediated FZD6 transcriptional activation. Oncogene. 2018;37:3098–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Han K, Lang T, Zhang Z, Zhang Y, Sun Y, Shen Z, et al. Luteolin attenuates wnt signaling via upregulation of FZD6 to suppress prostate cancer stemness revealed by comparative proteomics. Sci Rep. 2018;8:8537.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yan J, Liu TY, Zhou XY, Dang YN, Yin CQ, Zhang GFZD6. targeted by miR-21, represses gastric cancer cell proliferation and migration via activating non-canonical wnt pathway. J Gastroenterol Hepatol. 2016;31:88.

    Google Scholar 

  97. Huang TZ, Alvarez AA, Pangeni RP, Horbinski CM, Lu SJ, Kim SH, et al. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun. 2016;7:12885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fernandez A, Huggins IJ, Perna L, Brafman D, Lu D, Yao SY, et al. The WNT receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells. Proc Natl Acad Sci USA. 2014;111:1409–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang ZB, Xu YH. FZD7 accelerates hepatic metastases in pancreatic cancer by strengthening EMT and stemness associated with TGF-β/SMAD3 signaling. Mol Med. 2022;28:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang YN, Zhao GY, Condello S, Huang H, Cardenas H, Tanner EJ, et al. Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 2021;81:384–99.

    Article  CAS  PubMed  Google Scholar 

  101. Yin P, Bai Y, Wang Z, Sun Y, Gao J, Na L, et al. Non-canonical Fzd7 signaling contributes to breast cancer mesenchymal-like stemness involving col6a1. Cell Commun Signal. 2020;18:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheng YZ, Li L, Pan SR, Jiang HL, Jin HY. Targeting Frizzled-7 decreases stemness and chemotherapeutic resistance in gastric cancer cells by suppressing myc expression. Med Sci Monit. 2019;25:8637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xie SL, Fan S, Zhang SY, Chen WX, Li QX, Pan GK, et al. SOX8 regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the Wnt/beta-catenin pathway. Int J Cancer. 2018;142:1252–65.

    Article  CAS  PubMed  Google Scholar 

  104. Lo RC, Leung CO, Chan KK, Ho DW, Wong CM, Lee TK, et al. Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/beta-catenin pathway. Cell Death Differ. 2018;25:1426–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yin SP, Xu LP, Bonfil RD, Banerjee S, Sarkar FH, Sethi S, et al. Tumor-initiating cells and FZD8 play a major role in drug resistance in triple-negative breast cancer. Mol Cancer Ther. 2013;12:491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spanjer AIR, Menzen MH, Dijkstra AE, Berge MVD, Boezen HM, Nickle DC, et al. A pro-inflammatory role for the Frizzled-8 receptor in chronic bronchitis. Thorax. 2016;71:312–22.

    Article  PubMed  Google Scholar 

  107. Spanjer AIR, Baarsma HA, Oostenbrink LM, Jansen SR, Kuipers CC, Lindner M, et al. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8. FASEB J. 2016;30:1823–35.

    Article  CAS  PubMed  Google Scholar 

  108. Liu R, Chen YJ, Shou T, Hu J, Qing C. MiRNA-99b-5p targets FZD8 to inhibit non-small cell lung cancer proliferation, migration and invasion. Oncotargets Ther. 2019;12:2615–21.

    Article  CAS  Google Scholar 

  109. Sun SY, Liu SL, Duan SZ, Zhang L, Zhou HH, Hu YJ, et al. Targeting the c-Met/FZD8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas. Cancer Res. 2014;74:7546–59.

    Article  CAS  PubMed  Google Scholar 

  110. Chen W, Liu ZW, Mai WL, Xiao Y, You XL, Qin L. FZD8 indicates a poor prognosis and promotes gastric cancer invasion and metastasis via β-catenin signaling pathway. Ann Clin Lab Sci. 2020;50:13–23.

    PubMed  Google Scholar 

  111. Li QJ, Ye LP, Zhang X, Wang M, Lin CY, Huang S, et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 2017;402:166–76.

    Article  CAS  PubMed  Google Scholar 

  112. Ma P, Han JL. Overexpression of miR-100-5p inhibits papillary thyroid cancer progression via targeting FZD8. Open Med. 2022;17:1172–82.

    Article  CAS  Google Scholar 

  113. Wang YK, Spörle R, Paperna T, Schughart K, Francke U. Characterization and expression pattern of the frizzled gene Fzd9, the mouse homolog of FZD9 which is deleted in Williams-Beuren syndrome. Genomics. 1999;57:235–48.

    Article  CAS  PubMed  Google Scholar 

  114. David R. Developement: strong bones: got FZD9? Nat Rev Mol Cell Biol. 2011;12:280.

    PubMed  Google Scholar 

  115. Zacarías-Fluck MF, Jauset T, Martínez-Martín S, Kaur J, Casacuberta-Serra S, Massó-Vallés D, et al. The wnt signaling receptor Fzd9 is essential for myc-driven tumorigenesis in pancreatic islets. Life Sci Alliance. 2021;4:e201900490.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhang Z, Schittenhelm J, Guo K, Bühring HJ, Trautmann K, Meyermann R, et al. Upregulation of frizzled 9 in astrocytomas. Neuropathol Appl Neurobiol. 2006;32:615–24.

    Article  CAS  PubMed  Google Scholar 

  117. Wang QZ, Liu HC, Wang Q, Zhou FH, Xiu YX, Zhang YW, et al. Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9. PLoS One. 2017;12:e0180558.

    Article  PubMed  PubMed Central  Google Scholar 

  118. de Bastos DR, Conceição MPF, Michelli APP. Leite JMRS, da Silva RA, Cintra RC, et al. An analysis identified FZD9 as a potential prognostic biomarker in triple-negative breast cancer patients. Eur J Breast Health. 2021;17:42–52.

    Article  PubMed  Google Scholar 

  119. Zhang YJ, Jiang Q, Kong XL, Yang LL, Hu WZ, Lv CF, et al. Methylation status of the promoter region of the human frizzled 9 gene in acute myeloid leukemia. Mol Med Rep. 2016;14:1339–44.

    Article  CAS  PubMed  Google Scholar 

  120. Sompel K, Dwyer-Nield LD, Smith AJ, Elango A, Backos DS, Zhang BC, et al. Iloprost requires the Frizzled-9 receptor to prevent lung cancer. Iscience. 2022;25:e104442.

    Article  Google Scholar 

  121. Nagayama S, Fukukawa C, Katagiri T, Okamoto T, Aoyama T, Oyaizu N, et al. Therapeutic potential of antibodies against FZD10, a cell-surface protein, for synovial sarcomas. Oncogene. 2005;24:6201–12.

    Article  CAS  PubMed  Google Scholar 

  122. Fukukawa C, Hanaoka H, Nagayama S, Tsunoda T, Toguchida J, Endo K, et al. Radioimmunotherapy of human synovial sarcoma using a monoclonal antibody against FZD10. Cancer Sci. 2008;99:432–40.

    Article  CAS  PubMed  Google Scholar 

  123. Sudo H, Tsuji AB, Sugyo A, Harada Y, Nagayama S, Katagiri T, et al. FZD10-targeted alpha-radioimmunotherapy with (225) Ac-labeled OTSA101 achieves complete remission in a synovial sarcoma model. Cancer Sci. 2022;113:721–32.

    Article  CAS  PubMed  Google Scholar 

  124. Fukumoto T, Zhu HR, Nacarelli T, Karakashev S, Fatkhutdinov N, Wu S, et al. The N6-methylation of adenosine (M6a) in Fzd10 mRNA contributes to resistance to parp Inhibitor. Clin Cancer Res. 2019;25:204–204.

    Article  Google Scholar 

  125. Tomar T, Alkema NG, Schreuder L, Meersma GJ, Meyer TD, Criekinge WV, et al. Methylome analysis of extreme chemoresponsive patients identifies novel markers of platinum sensitivity in high-grade serous ovarian cancer. BMC Med. 2017;15:116.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wang J, Yu HM, Dong W, Zhang C, Hu MT, Ma WC, et al. N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells’ properties and lenvatinib resistance through wnt/β-catenin and hippo signaling pathways. Gastroenterology. 2023;164:990–1005.

    Article  CAS  PubMed  Google Scholar 

  127. Tulalamba W, Ngernsombat C, Larbcharoensub N, Janvilisri T. Transcriptomic profiling revealed FZD10 as a novel biomarker for nasopharyngeal carcinoma recurrence. Front Oncol. 2023;12:1084713.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chen JY, Zhang F, Ren XS, Wang YH, Huang WH, Zhang JT, et al. Targeting fatty acid synthase sensitizes human nasopharyngeal carcinoma cells to radiation via downregulating frizzled class receptor 10. Cancer Biol Med. 2020;17:740–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gong C, Qu SH, Lv XB, Liu BD, Tan WG, Nie Y, et al. BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nat Commun. 2014;5:5406.

    Article  PubMed  Google Scholar 

  130. Scavo MP, Rizzi F, Depalo N, Armentano R, Coletta S, Serino G, et al. Exosome released FZD10 increases Ki-67 expression via phospho-ERK1/2 in colorectal and gastric cancer. Front Oncol. 2021;11:730093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, et al. Wnt pathway inhibition via the targeting of frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA. 2012;109:11717–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Diamond JR, Becerra C, Richards D, Mita A, Osborne C, O’Shaughnessy J, et al. Phase Ib clinical trial of the anti-frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res Treat. 2020;184:53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Davis SL, Cardin DB, Shahda S, Lenz H, Dotan E, O’Neil BH, et al. A phase 1b dose escalation study of wnt pathway inhibitor vantictumab in combination with nab-paclitaxel and gemcitabine in patients with previously untreated metastatic pancreatic cancer. Invest New Drugs. 2020;38:821–30.

    Article  CAS  PubMed  Google Scholar 

  134. Le PN, McDermott JD, Jimeno A. Targeting the wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 2015;146:1–11.

    Article  CAS  PubMed  Google Scholar 

  135. Jimeno A, Gordon M, Chugh R, Messersmith W, Mendelson D, Dupont J, et al. A first-in-human phase 1 study of anticancer stem cell agent OMP-54F28 (FZDS-Fe), decoy receptor for wnt ligands, in patients with advanced solid tumors. J Clin Oncol. 2017;23:7490–7.

    CAS  Google Scholar 

  136. Dotan E, Cardin DB, Lenz H, Messersmith W, O’Neil B, Cohen SJ, et al. Phase Ib study of wnt inhibitor ipafricept with gemcitabine and nab-paclitaxel in patients with previously untreated stage IV pancreatic cancer. Clin Cancer Res. 2020;26:5348–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Moore KN, Gunderson CC, Sabbatini P, McMeekin DS, Mantia-Smaldone G, Burger RA, et al. A phase 1b dose escalation study of ipafricept (OMP-54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer. Gynecol Oncol. 2019;154:294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Le PN, Keysar SB, Miller B, Eagles JR, Chimed T, Reisinger J, et al. Wnt signaling dynamics in head and neck squamous cell cancer tumor-stroma interactions. Mol Carcinog. 2019;58:398–410.

    Article  CAS  PubMed  Google Scholar 

  139. Pavlovic Z, Adams JJ, Blazer LL, Gakhal AK, Jarvik N, Steinhart Z, et al. A synthetic anti-frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. Mabs. 2018;10:1157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dang LT, Miao Y, Ha A, Yuki K, Park K, Janda CY, et al. Receptor subtype discrimination using extensive shape complementary designed interfaces. Nat Struct Mol Biol. 2019;26:407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mohammadi M, Nejatollahi F, Sakhteman A, Zarei N. Insilico analysis of three different tag polypeptides with dual roles in scFv antibodies. J Theor Biol. 2016;402:100–6.

    Article  CAS  PubMed  Google Scholar 

  142. Zarei N, Fazeli M, Mohammadi M, Nejatollahi F. Cell growth inhibition and apoptosis in breast cancer cells induced by anti-FZD7 scFvs: involvement of bioinformatics-based design of novel epitopes. Breast Cancer Res Treat. 2018;169:427–36.

    Article  CAS  PubMed  Google Scholar 

  143. Pode-Shakked N, Harari-Steinberg O, Haberman-Ziv Y, Rom-Gross E, Bahar S, Omer D, et al. Resistance or sensitivity of Wilms’ tumor to anti-FZD7 antibody highlights the wnt pathway as a possible therapeutic target. Oncogene. 2011;30:1664–80.

    Article  CAS  PubMed  Google Scholar 

  144. Riley RS, Day ES. Frizzled7 antibody-functionalized nanoshells enable multivalent binding for wnt signaling inhibition in triple-negative breast cancer cells. Small. 2017;13:544.

    Article  Google Scholar 

  145. Wei W, Chua M, Grepper S, So SK. Soluble frizzled-7 receptor inhibits wnt signaling and sensitizes hepatocellular carcinoma cells towards doxorubicin. Mol Cancer. 2011;10:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nambotin SB, Lefrancois L, Sainsily X, Berthillon P, Kim M, Wands JR. Pharmacological inhibition of frizzled-7 displays anti-tumor properties in hepatocellular carcinoma. J Hepatol. 2011;54:288–99.

    Article  CAS  PubMed  Google Scholar 

  147. Nile AH, de Sousa E, Melo F, Mukund S, Piskol R, Hansen S, et al. A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nat Chem Biol. 2018;14:582–90. Corrected and republished from: Nat Chem Biol. 2018;14: 902.

    Article  CAS  PubMed  Google Scholar 

  148. Giraudet AL, Cassier PA, Iwao-Fukukawa C, Garin G, Badel J, Kryza D, et al. A first-in-human study investigating biodistribution, safety and recommended dose of a new radiolabeled MAb targeting FZD10 in metastatic synovial sarcoma patients. BMC Cancer. 2018;18:646.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ulloa-Aguirre A, Conn PM. Pharmacoperones: a new therapeutic approach for diseases caused by misfolded G protein-coupled receptors. Recent Pat Endocr Metab Immune Drug Discov. 2011;5:13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Generoso SF, Giustiniano M, Regina GL, Bottone S, Passacantilli S, Maro SD, et al. Pharmacological folding chaperones act as allosteric ligands of frizzled4. Nat Chem Biol. 2015;11:280–6.

    Article  CAS  PubMed  Google Scholar 

  151. Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008;7:542.

    Article  Google Scholar 

  152. Zhang W, Lu WY, Ananthan S, Suto MJ, Li YH. Discovery of novel frizzled-7 inhibitors by targeting the receptor’s transmembrane domain. Oncotarget. 2017;8:91459–70.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Pinto IA, Da Silveira NJF. In Silico identification of potential inhibitors of the wnt signaling pathway in human breast cancer. J Comput Biol. 2020;27:999–1010.

    Article  Google Scholar 

  154. Zhao YG, Ren JS, Hillier J, Lu WX, Jones EY. Antiepileptic drug Carbamazepine binds to a novel pocket on the wnt receptor frizzled-8. J Med Chem. 2020;63:3252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang SF, Wu YR, Xu TH, de Waal PW, He YZ, Pu MC, et al. Crystal structure of the frizzled 4 receptor in a ligand-free state. Nature. 2018;560:666–70.

    Article  CAS  PubMed  Google Scholar 

  156. Zhong Q, Zhao YY, Ye FF, Xiao ZY, Huang GXY, Xu M, et al. Cryo-EM structure of human wntless in complex with wnt3a. Nat Commun. 2021;12:4541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of wnt pathway tumour suppressors in cancer. Nat Rev Cancer. 2021;21:64.

    Article  CAS  PubMed  Google Scholar 

  158. Blum B, Bar-Nur O, Golan-Lev T, Benvenisty N. The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol. 2009;27:281–7.

    Article  CAS  PubMed  Google Scholar 

  159. Lukaszewicz AI, Nguyen C, Melendez E, Lin DP, Teo JL, Lai KKY, et al. The mode of stem cell division is dependent on the differential interaction of β-catenin with the Kat3 coactivators CBP or p300. Cancers. 2019;11:962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Suryawanshi A, Manoharan I, Hong Y, Swafford D, Majumdar T, Taketo MM, et al. Canonical wnt signaling in dendritic cells regulates Th1/Th17 Responses and suppresses autoimmune neuroinflammation. J Immunol. 2015;194:3295–304.

    Article  CAS  PubMed  Google Scholar 

  161. Zhou MM, Sun XZ, Zhu YH. Analysis of the role of frizzled 2 in different cancer types. FEBS Open Bio. 2021;11:1195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant number 82172686), and Beijing Natural Science Foundation (Grant numbers 7202088, 7212152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-ming Liu, Xiao-cong Pang or Tian-cheng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hy., Sun, Xj., Xiu, Sy. et al. Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01270-3

Keywords

Search

Quick links