Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy

Abstract

Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modulators of aerobic glycolysis and potential anti-cancer therapeutics.
Fig. 2: The mechanism of GAPDH in the regulation of glycolysis and cancer cell growth.
Fig. 3: The mechanism for the conversion of 3-phosphoglycerate to 2-phosphoglycerate through PGAM1.
Fig. 4: The roles of ENO1 in cancer.
Fig. 5: The stability of HIF-1 under normoxic and hypoxia conditions.
Fig. 6: Post-translational modifications of key enzymes in glycolysis.
Fig. 7: Strategies for the regulation of enzymes in the glycolysis.

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Lopez-Lazaro M. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem. 2008;8:305–12.

    Article  CAS  PubMed  Google Scholar 

  3. Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 2019;95:912–9.

    Article  CAS  PubMed  Google Scholar 

  4. Marcucci F, Rumio C. On the role of glycolysis in early tumorigenesis-permissive and executioner effects. Cells. 2023;12:1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. TeSlaa T, Ralser M, Fan J, Rabinowitz JD. The pentose phosphate pathway in health and disease. Nat Metab. 2023;5:1275–89.

    Article  CAS  PubMed  Google Scholar 

  6. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wu W, Zhao S. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin. 2013;45:18–26.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Wang N, Chen J, Shen J. Emerging glycolysis targeting and drug discovery from Chinese medicine in cancer therapy. Evid Based Complement Altern Med. 2012;2012:873175.

    Google Scholar 

  10. Lee SH, Golinska M, Griffiths JR. HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells. Cells. 2021;10:2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sawant Dessai A, Kalhotra P, Novickis AT, Dasgupta S. Regulation of tumor metabolism by post translational modifications on metabolic enzymes. Cancer Gene Ther. 2023;30:548–58.

    Article  CAS  PubMed  Google Scholar 

  12. Yu L, Chen X, Sun X, Wang L, Chen S. The glycolytic switch in tumors: how many players are involved? J Cancer. 2017;8:3430–40.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654–62.

    Article  CAS  PubMed  Google Scholar 

  14. Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12:152.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Asp Med. 2013;34:121–38.

    Article  CAS  Google Scholar 

  16. Pliszka M, Szablewski L. Glucose transporters as a target for anticancer therapy. Cancers. 2021;13:4184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meng Y, Xu X, Luan H, Li L, Dai W, Li Z, et al. The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Med Chem. 2019;11:2333–52.

    Article  CAS  PubMed  Google Scholar 

  18. Song MY, Lee DY, Yun SM, Kim EH. GLUT3 promotes epithelial-mesenchymal transition via TGF-beta/JNK/ATF2 signaling pathway in colorectal cancer cells. Biomedicines. 2022;10:1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reckzeh ES, Karageorgis G, Schwalfenberg M, Ceballos J, Nowacki J, Stroet MCM, et al. Inhibition of glucose transporters and glutaminase synergistically impairs tumor cell growth. Cell Chem Biol. 2019;26:1214–28.e25.

    Article  CAS  PubMed  Google Scholar 

  20. Ceballos J, Schwalfenberg M, Karageorgis G, Reckzeh ES, Sievers S, Ostermann C, et al. Synthesis of indomorphan pseudo-natural product inhibitors of glucose transporters GLUT-1 and -3. Angew Chem Int Ed Engl. 2019;58:17016–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun Y, Duan X, Wang F, Tan H, Hu J, Bai W, et al. Inhibitory effects of flavonoids on glucose transporter 1 (GLUT1): From library screening to biological evaluation to structure-activity relationship. Toxicology. 2023;488:153475.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012;11:1672–82.

    Article  CAS  PubMed  Google Scholar 

  23. Sawayama H, Ogata Y, Ishimoto T, Mima K, Hiyoshi Y, Iwatsuki M, et al. Glucose transporter 1 regulates the proliferation and cisplatin sensitivity of esophageal cancer. Cancer Sci. 2019;110:1705–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Zhang W, Cao Y, Liu Y, Bergmeier S, Chen X. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms. Cancer Lett. 2010;298:176–85.

    Article  CAS  PubMed  Google Scholar 

  25. Gao P, Shen S, Li X, Liu D, Meng Y, Liu Y, et al. Dihydroartemisinin inhibits the proliferation of leukemia cells K562 by suppressing PKM2 and GLUT1 mediated aerobic glycolysis. Drug Des Devel Ther. 2020;14:2091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang D, Wang Y, Dong L, Huang Y, Yuan J, Ben W, et al. Therapeutic role of EF24 targeting glucose transporter 1-mediated metabolism and metastasis in ovarian cancer cells. Cancer Sci. 2013;104:1690–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsumoto T, Jimi S, Migita K, Takamatsu Y, Hara S. Inhibition of glucose transporter 1 induces apoptosis and sensitizes multiple myeloma cells to conventional chemotherapeutic agents. Leuk Res. 2016;41:103–10.

    Article  CAS  PubMed  Google Scholar 

  28. Gou Q, Dong C, Jin J, Liu Q, Lu W, Shi J, et al. PPARα agonist alleviates tumor growth and chemo-resistance associated with the inhibition of glucose metabolic pathway. Eur J Pharmacol. 2019;863:172664.

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Zhao Y, He C, Gao G, Li J, Qiu L, et al. Identification of a novel GLUT1 inhibitor with in vitro and in vivo anti-tumor activity. Int J Biol Macromol. 2022;216:768–78.

    Article  CAS  PubMed  Google Scholar 

  30. Hu Y, Yang Z, Bao D, Ni JS, Lou J. miR-455-5p suppresses hepatocellular carcinoma cell growth and invasion via IGF-1R/AKT/GLUT1 pathway by targeting IGF-1R. Pathol Res Pr. 2019;215:152674.

    Article  CAS  Google Scholar 

  31. Ren L, Yao Y, Wang Y, Wang S. MiR-505 suppressed the growth of hepatocellular carcinoma cells via targeting IGF-1R. Biosci Rep. 2019;39:BSR20182442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen B, Tang H, Liu X, Liu P, Yang L, Xie X, et al. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett. 2015;356:410–7.

    Article  CAS  PubMed  Google Scholar 

  33. Tu MJ, Duan Z, Liu Z, Zhang C, Bold RJ, Gonzalez FJ, et al. MicroRNA-1291-5p sensitizes pancreatic carcinoma cells to arginine deprivation and chemotherapy through the regulation of arginolysis and glycolysis. Mol Pharmacol. 2020;98:686–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamasaki T, Seki N, Yoshino H, Itesako T, Yamada Y, Tatarano S, et al. Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci. 2013;104:1411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He Y, Deng F, Zhao S, Zhong S, Zhao J, Wang D, et al. Analysis of miRNA-mRNA network reveals miR-140-5p as a suppressor of breast cancer glycolysis via targeting GLUT1. Epigenomics. 2019;11:1021–36.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang T, Zhang Z, Li F, Ping Y, Qin G, Zhang C, et al. miR-143 regulates memory T cell differentiation by reprogramming T cell metabolism. J Immunol. 2018;201:2165–75.

    Article  CAS  PubMed  Google Scholar 

  37. Liu M, Gao J, Huang Q, Jin Y, Wei Z. Downregulating microRNA-144 mediates a metabolic shift in lung cancer cells by regulating GLUT1 expression. Oncol Lett. 2016;11:3772–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun P, Hu JW, Xiong WJ, Mi J. miR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts. Asian Pac J Cancer Prev. 2014;15:4245–50.

    Article  PubMed  Google Scholar 

  39. Xu Y, Chai B, Wang X, Wu Z, Gu Z, Liu X, et al. miRNA-199a-5p/SLC2A1 axis regulates glucose metabolism in non-small cell lung cancer. J Cancer. 2022;13:2352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu G, Pan S, Zhu Z, Li J. Overexpression of miR-340 inhibits cell proliferation and induces apoptosis of human bladder cancer via targeting Glut-1. BMC Urol. 2021;21:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cannistraci A, Hascoet P, Ali A, Mundra P, Clarke NW, Pavet V, et al. MiR-378a inhibits glucose metabolism by suppressing GLUT1 in prostate cancer. Oncogene. 2022;41:1445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo H, Nan Y, Zhen Y, Zhang Y, Guo L, Yu K, et al. miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glucose transporter 1. Tumour Biol. 2016;37:13751–61.

    Article  CAS  PubMed  Google Scholar 

  43. Xu J, Gu X, Yang X, Meng Y. MiR-1204 promotes ovarian squamous cell carcinoma growth by increasing glucose uptake. Biosci Biotechnol Biochem. 2019;83:123–8.

    Article  PubMed  Google Scholar 

  44. Chen D, Wang H, Chen J, Li Z, Li S, Hu Z, et al. MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells. Front Pharmacol. 2018;9:502.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fei X, Qi M, Wu B, Song Y, Wang Y, Li T. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett. 2012;586:392–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kwak S, Park SH, Kim SH, Sung GJ, Song JH, Jeong JH, et al. miR-3189-targeted GLUT3 repression by HDAC2 knockdown inhibits glioblastoma tumorigenesis through regulating glucose metabolism and proliferation. J Exp Clin Cancer Res. 2022;41:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nowak N, Kulma A, Gutowicz J. Up-regulation of key glycolysis proteins in cancer development. Open Life Sci. 2018;13:569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kudryavtseva AV, Fedorova MS, Zhavoronkov A, Moskalev AA, Zasedatelev AS, Dmitriev AA, et al. Effect of lentivirus-mediated shRNA inactivation of HK1, HK2, and HK3 genes in colorectal cancer and melanoma cells. BMC Genet. 2016;17:156.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pastorino JG, Hoek JB. Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr. 2008;40:171–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mazure NM. VDAC in cancer. Biochim Biophys Acta Bioenerg. 2017;1858:665–73.

    Article  CAS  PubMed  Google Scholar 

  51. Dwarakanath B, Jain V. Targeting glucose metabolism with 2-deoxy-D-glucose for improving cancer therapy. Future Oncol. 2009;5:581–5.

    Article  CAS  PubMed  Google Scholar 

  52. Huang Y, Sun G, Sun X, Li F, Zhao L, Zhong R, et al. The potential of lonidamine in combination with chemotherapy and physical therapy in cancer treatment. Cancers. 2020;12:3332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ikeda S, Abe F, Matsuda Y, Kitadate A, Takahashi N, Tagawa H. Hypoxia-inducible hexokinase-2 enhances anti-apoptotic function via activating autophagy in multiple myeloma. Cancer Sci. 2020;111:4088–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li W, Hao J, Zhang L, Cheng Z, Deng X, Shu G. Astragalin reduces hexokinase 2 through increasing miR-125b to inhibit the proliferation of hepatocellular carcinoma cells in vitro and in vivo. J Agric Food Chem. 2017;65:5961–72.

    Article  CAS  PubMed  Google Scholar 

  55. Li W, Zheng M, Wu S, Gao S, Yang M, Li Z, et al. Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J Exp Clin Cancer Res. 2017;36:58.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jiang SH, Dong FY, Da LT, Yang XM, Wang XX, Weng JY, et al. Ikarugamycin inhibits pancreatic cancer cell glycolysis by targeting hexokinase 2. FASEB J. 2020;34:3943–55.

    Article  CAS  PubMed  Google Scholar 

  57. Li Z, Tang X, Luo Y, Chen B, Zhou C, Wu X, et al. NK007 helps in mitigating paclitaxel resistance through p38MAPK activation and HK2 degradation in ovarian cancer. J Cell Physiol. 2019;234:16178–90.

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Xu Q, Yang W, Wu T, Lu X. Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells. Gene. 2019;712:143956.

    Article  CAS  PubMed  Google Scholar 

  59. Yu Q, Dai W, Ji J, Wu L, Feng J, Li J, et al. Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c-myc/hexokinase 2 pathway. J Cell Mol Med. 2022;26:3031–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li M, Gao F, Zhao Q, Zuo H, Liu W, Li W. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-Myc signaling-mediated aerobic glycolysis. Cell Death Dis. 2020;11:381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Galluzzi L, Kepp O, Tajeddine N, Kroemer G. Disruption of the hexokinase-VDAC complex for tumor therapy. Oncogene. 2008;27:4633–5.

    Article  CAS  PubMed  Google Scholar 

  62. Zhu W, Huang Y, Pan Q, Xiang P, Xie N, Yu H. MicroRNA-98 suppress warburg effect by targeting HK2 in colon cancer cells. Dig Dis Sci. 2017;62:660–8.

    Article  CAS  PubMed  Google Scholar 

  63. Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T, et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. Hepatology. 2015;62:1132–44.

    Article  CAS  PubMed  Google Scholar 

  64. Chen W, Chen Y, Hui T. microRNA-143 interferes the EGFR-stimulated glucose metabolism to re-sensitize 5-FU resistant colon cancer cells via targeting hexokinase 2. J Chemother. 2023;35:539–49.

    Article  CAS  PubMed  Google Scholar 

  65. Li L, Zhang X, Lin Y, Ren X, Xie T, Lin J, et al. Let-7b-5p inhibits breast cancer cell growth and metastasis via repression of hexokinase 2-mediated aerobic glycolysis. Cell Death Discov. 2023;9:114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu Y, Huo Y, Wang D, Tai Y, Li J, Pang D, et al. MiR-216a-5p/Hexokinase 2 axis regulates uveal melanoma growth through modulation of Warburg effect. Biochem Biophys Res Commun. 2018;501:885–92.

    Article  CAS  PubMed  Google Scholar 

  67. Xu QL, Luo Z, Zhang B, Qin GJ, Zhang RY, Kong XY, et al. Methylation-associated silencing of miR-9-1 promotes nasopharyngeal carcinoma progression and glycolysis via HK2. Cancer Sci. 2021;112:4127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W, et al. MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget. 2015;6:40799–814.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yang H, Hou H, Zhao H, Yu T, Hu Y, Hu Y, et al. HK2 is a crucial downstream regulator of miR-148a for the maintenance of sphere-forming property and cisplatin resistance in cervical cancer cells. Front Oncol. 2021;11:794015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu T, Ye P, Ye Y, Han B. MicroRNA-216b targets HK2 to potentiate autophagy and apoptosis of breast cancer cells via the mTOR signaling pathway. Int J Biol Sci. 2021;17:2970–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wei Y, Wang M, Liang M, Liu L, Mo S, Zhang H, et al. Tumor-suppressive miR-323a inhibits pancreatic cancer cell proliferation and glycolysis through targeting HK-2. Pathol Int. 2022;72:617–30.

    Article  CAS  PubMed  Google Scholar 

  72. Webb BA, Dosey AM, Wittmann T, Kollman JM, Barber DL. The glycolytic enzyme phosphofructokinase-1 assembles into filaments. J Cell Biol. 2017;216:2305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang G, Xu Z, Wang C, Yao F, Li J, Chen C, et al. Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues. Oncol Lett. 2013;6:1701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q, et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun. 2017;8:949.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Goncalves MD, Cantley LC. A glycolysis outsider steps into the cancer spotlight. Cell Metab. 2018;28:3–4.

    Article  CAS  PubMed  Google Scholar 

  76. De Oliveira T, Goldhardt T, Edelmann M, Rogge T, Rauch K, Kyuchukov ND, et al. Effects of the novel PFKFB3 inhibitor KAN0438757 on colorectal cancer cells and its systemic toxicity evaluation in vivo. Cancers. 2021;13:1011.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jiang YX, Siu MKY, Wang JJ, Leung THY, Chan DW, Cheung ANY, et al. PFKFB3 regulates chemoresistance, metastasis and stemness via IAP proteins and the NF-κB signaling pathway in ovarian cancer. Front Oncol. 2022;12:748403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dou Q, Grant AK, Callahan C, Coutinho de Souza P, Mwin D, Booth AL, et al. PFKFB3-mediated pro-glycolytic shift in hepatocellular carcinoma proliferation. Cell Mol Gastroenterol Hepatol. 2023;15:61–75.

    Article  CAS  PubMed  Google Scholar 

  79. Yu H, Dai C, Zhu W, Jin Y, Wang C. PFKFB3 increases IL-1β and TNF-α in intestinal epithelial cells to promote tumorigenesis in colitis-associated colorectal cancer. J Oncol. 2022;2022:6367437.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yang Y, Ishak Gabra MB, Hanse EA, Lowman XH, Tran TQ, Li H, et al. MiR-135 suppresses glycolysis and promotes pancreatic cancer cell adaptation to metabolic stress by targeting phosphofructokinase-1. Nat Commun. 2019;10:809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Deng X, Li D, Ke X, Wang Q, Yan S, Xue Y, et al. Mir-488 alleviates chemoresistance and glycolysis of colorectal cancer by targeting PFKFB3. J Clin Lab Anal. 2021;35:e23578.

    Article  CAS  PubMed  Google Scholar 

  82. Wang J, Li X, Xiao Z, Wang Y, Han Y, Li J, et al. MicroRNA-488 inhibits proliferation and glycolysis in human prostate cancer cells by regulating PFKFB3. FEBS Open Bio. 2019;9:1798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Du JY, Wang LF, Wang Q, Yu LD. miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep. 2015;33:1890–8.

    Article  CAS  PubMed  Google Scholar 

  84. Boscaro C, Baggio C, Carotti M, Sandona D, Trevisi L, Cignarella A, et al. Targeting of PFKFB3 with miR-206 but not mir-26b inhibits ovarian cancer cell proliferation and migration involving FAK downregulation. FASEB J. 2022;36:e22140.

    Article  CAS  PubMed  Google Scholar 

  85. Ge X, Lyu P, Cao Z, Li J, Guo G, Xia W, et al. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun. 2015;463:1115–21.

    Article  CAS  PubMed  Google Scholar 

  86. He X, Cheng X, Ding J, Xiong M, Chen B, Cao G. Hyperglycemia induces miR-26-5p down-regulation to overexpress PFKFB3 and accelerate epithelial-mesenchymal transition in gastric cancer. Bioengineered. 2022;13:2902–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen X, Wang A, Yue X. miR-449c inhibits migration and invasion of gastric cancer cells by targeting PFKFB3. Oncol Lett. 2018;16:417–24.

    PubMed  PubMed Central  Google Scholar 

  88. Seidler NW. GAPDH and intermediary metabolism. Adv Exp Med Biol. 2013;985:37–59.

    Article  PubMed  Google Scholar 

  89. Thornalley PJ, Rabbani N. Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol. 2011;22:318–25.

    Article  CAS  PubMed  Google Scholar 

  90. Ganapathy-Kanniappan S, Geschwind JF, Kunjithapatham R, Buijs M, Syed LH, Rao PP, et al. 3-Bromopyruvate induces endoplasmic reticulum stress, overcomes autophagy and causes apoptosis in human HCC cell lines. Anticancer Res. 2010;30:923–35.

    CAS  PubMed  Google Scholar 

  91. Lei J, Yang Y, Lu Z, Pan H, Fang J, Jing B, et al. Taming metabolic competition via glycolysis inhibition for safe and potent tumor immunotherapy. Biochem Pharmacol. 2022;202:115153.

    Article  CAS  PubMed  Google Scholar 

  92. Galbiati A, Bova S, Pacchiana R, Borsari C, Persico M, Zana A, et al. Discovery of a spirocyclic 3-bromo-4,5-dihydroisoxazole covalent inhibitor of hGAPDH with antiproliferative activity against pancreatic cancer cells. Eur J Med Chem. 2023;254:115286.

    Article  CAS  PubMed  Google Scholar 

  93. Yang W, Wang Y, Huang Y, Yu J, Wang T, Li C, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer. Biomed Pharmacother. 2023;159:114301.

    Article  CAS  PubMed  Google Scholar 

  94. Li T, Tan X, Yang R, Miao Y, Zhang M, Xi Y, et al. Discovery of novel glyceraldehyde-3-phosphate dehydrogenase inhibitor via docking-based virtual screening. Bioorg Chem. 2020;96:103620.

    Article  CAS  PubMed  Google Scholar 

  95. Ebron JS, Shankar E, Singh J, Sikand K, Weyman CM, Gupta S, et al. MiR-644a disrupts oncogenic transformation and Warburg effect by direct modulation of multiple genes of tumor-promoting pathways. Cancer Res. 2019;79:1844–56.

    Article  CAS  PubMed  Google Scholar 

  96. Fu Q, Yu Z. Phosphoglycerate kinase 1 (PGK1) in cancer: A promising target for diagnosis and therapy. Life Sci. 2020;256:117863.

    Article  CAS  PubMed  Google Scholar 

  97. He Y, Luo Y, Zhang D, Wang X, Zhang P, Li H, et al. PGK1-mediated cancer progression and drug resistance. Am J Cancer Res. 2019;9:2280–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li M, Zhang A, Qi X, Yu R, Li J. A novel inhibitor of PGK1 suppresses the aerobic glycolysis and proliferation of hepatocellular carcinoma. Biomed Pharmacother. 2023;158:114115.

    Article  CAS  PubMed  Google Scholar 

  99. Liao L, Dang W, Lin T, Yu J, Liu T, Li W, et al. A potent PGK1 antagonist reveals PGK1 regulates the production of IL-1beta and IL-6. Acta Pharm Sin B. 2022;12:4180–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ye T, Liang Y, Zhang D, Zhang X. MicroRNA-16-1-3p represses breast tumor growth and metastasis by inhibiting PGK1-mediated Warburg effect. Front Cell Dev Biol. 2020;8:615154.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen Z, Zhuang W, Wang Z, Xiao W, Don W, Li X, et al. MicroRNA-450b-3p inhibits cell growth by targeting phosphoglycerate kinase 1 in hepatocellular carcinoma. J Cell Biochem. 2019;120:18805–15.

    Article  CAS  PubMed  Google Scholar 

  102. Ge J, Li J, Na S, Wang P, Zhao G, Zhang X. miR-548c-5p inhibits colorectal cancer cell proliferation by targeting PGK1. J Cell Physiol. 2019;234:18872–8.

    Article  CAS  PubMed  Google Scholar 

  103. Wang F, Zhang H, Liu B, Liu W, Zhang Z. miR-6869-5p inhibits glioma cell proliferation and invasion via targeting PGK1. Mediators Inflamm. 2020;2020:9752372.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yang GJ, Tao F, Zhong HJ, Yang C, Chen J. Targeting PGAM1 in cancer: An emerging therapeutic opportunity. Eur J Med Chem. 2022;244:114798.

    Article  CAS  PubMed  Google Scholar 

  105. Hitosugi T, Chen J. Post-translational modifications and the Warburg effect. Oncogene. 2014;33:4279–85.

    Article  CAS  PubMed  Google Scholar 

  106. Britton HG, Clarke JB. Mechanism of the 2,3-diphosphoglycerate-dependent phosphoglycerate mutase from rabbit muscle. Biochem J. 1972;130:397–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BF. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol. 2005;23:1303–7.

    Article  CAS  PubMed  Google Scholar 

  108. Hitosugi T, Zhou L, Elf S, Fan J, Kang HB, Seo JH, et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell. 2012;22:585–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weng Y, Duan W, Yu X, Wu F, Yang D, Jiang Y, et al. MicroRNA-324-3p inhibits osteosarcoma progression by suppressing PGAM1-mediated aerobic glycolysis. Cancer Sci. 2023;114:2345–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li F, Yang H, Kong T, Chen S, Li P, Chen L, et al. PGAM1, regulated by miR-3614-5p, functions as an oncogene by activating transforming growth factor-β (TGF-β) signaling in the progression of non-small cell lung carcinoma. Cell Death Dis. 2020;11:710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang CK, Sun Y, Lv L, Ping Y. ENO1 and cancer. Mol Ther Oncolytics. 2022;24:288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Qiao G, Wu A, Chen X, Tian Y, Lin X. Enolase 1, a moonlighting protein, as a potential target for cancer treatment. Int J Biol Sci. 2021;17:3981–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci. 2001;58:902–20.

    Article  CAS  PubMed  Google Scholar 

  114. Qian X, Xu W, Xu J, Shi Q, Li J, Weng Y, et al. Enolase 1 stimulates glycolysis to promote chemoresistance in gastric cancer. Oncotarget. 2017;8:47691–708.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Didiasova M, Schaefer L, Wygrecka M. When place matters: shuttling of enolase-1 across cellular compartments. Front Cell Dev Biol. 2019;7:61.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Almaguel FA, Sanchez TW, Ortiz-Hernandez GL, Casiano CA. Alpha-enolase: emerging tumor-associated antigen, cancer biomarker, and oncotherapeutic target. Front Genet. 2020;11:614726.

    Article  CAS  PubMed  Google Scholar 

  117. Chen X, Xu H, Wu N, Liu X, Qiao G, Su S, et al. Interaction between granulin A and enolase 1 attenuates the migration and invasion of human hepatoma cells. Oncotarget. 2017;8:30305–16.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jiang K, Dong C, Yin Z, Li R, Mao J, Wang C, et al. Exosome-derived ENO1 regulates integrin alpha6beta4 expression and promotes hepatocellular carcinoma growth and metastasis. Cell Death Dis. 2020;11:972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Keller A, Peltzer J, Carpentier G, Horvath I, Olah J, Duchesnay A, et al. Interactions of enolase isoforms with tubulin and microtubules during myogenesis. Biochim Biophys Acta. 2007;1770:919–26.

    Article  CAS  PubMed  Google Scholar 

  120. Cook K, Daniels I, Symonds P, Pitt T, Gijon M, Xue W, et al. Citrullinated alpha-enolase is an effective target for anti-cancer immunity. Oncoimmunology. 2018;7:e1390642.

    Article  PubMed  Google Scholar 

  121. Maranto C, Perconti G, Contino F, Rubino P, Feo S, Giallongo A. Cellular stress induces cap-independent alpha-enolase/MBP-1 translation. FEBS Lett. 2015;589:2110–6.

    Article  CAS  PubMed  Google Scholar 

  122. Song K, Rajasekaran N, Chelakkot C, Lee HS, Paek SM, Yang H, et al. Macrosphelide A exhibits a specific anti-cancer effect by simultaneously inactivating ENO1, ALDOA, and FH. Pharmaceuticals. 2021;14:1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang T, Shu X, Zhang HW, Sun LX, Yu L, Liu J, et al. Enolase 1 regulates stem cell-like properties in gastric cancer cells by stimulating glycolysis. Cell Death Dis. 2020;11:870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu Y, Li H, Liu Y, Zhu Z. MiR-22-3p targeting alpha-enolase 1 regulates the proliferation of retinoblastoma cells. Biomed Pharmacother. 2018;105:805–12.

    Article  CAS  PubMed  Google Scholar 

  125. Ilhan M. Non-metabolic functions of pyruvate kinase M2: PKM2 in tumorigenesis and therapy resistance. Neoplasma. 2022;69:747–54.

    Article  CAS  PubMed  Google Scholar 

  126. Wong N, Ojo D, Yan J, Tang D. PKM2 contributes to cancer metabolism. Cancer Lett. 2015;356:184–91.

    Article  CAS  PubMed  Google Scholar 

  127. Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA. 2011;108:4129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 2012;150:685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Verma H, Cholia RP, Kaur S, Dhiman M, Mantha AK. A short review on cross-link between pyruvate kinase (PKM2) and glioblastoma multiforme. Metab Brain Dis. 2021;36:751–65.

    Article  CAS  PubMed  Google Scholar 

  130. Shan S, Shi J, Yang P, Jia B, Wu H, Zhang X, et al. Apigenin restrains colon cancer cell proliferation via targeted blocking of pyruvate kinase M2-dependent glycolysis. J Agric Food Chem. 2017;65:8136–44.

    Article  CAS  PubMed  Google Scholar 

  131. Park JH, Kundu A, Lee SH, Jiang C, Lee SH, Kim YS, et al. Specific pyruvate kinase M2 inhibitor, compound 3K, induces autophagic cell death through disruption of the glycolysis pathway in ovarian cancer cells. Int J Biol Sci. 2021;17:1895–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jiang C, Zhao X, Jeong T, Kang JY, Park JH, Kim IS, et al. Novel specific pyruvate kinase M2 inhibitor, compound 3h, induces apoptosis and autophagy through suppressing Akt/mTOR signaling pathway in LNCaP cells. Cancers. 2022;15:265.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, et al. Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1alpha inhibition. Sci Rep. 2018;8:8323.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Li X, Sun J, Xu Q, Duan W, Yang L, Wu X, et al. Oxymatrine inhibits colorectal cancer metastasis via attenuating PKM2-mediated aerobic glycolysis. Cancer Manag Res. 2020;12:9503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wu H, Wang Y, Wu C, Yang P, Li H, Li Z. Resveratrol induces cancer cell apoptosis through miR-326/PKM2-mediated ER stress and mitochondrial fission. J Agric Food Chem. 2016;64:9356–67.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang Q, Liu Q, Zheng S, Liu T, Yang L, Han X, et al. Shikonin inhibits tumor growth of ESCC by suppressing PKM2 mediated aerobic glycolysis and STAT3 phosphorylation. J Cancer. 2021;12:4830–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang J, Zhou J, Xiao S. Shikonin inhibits growth, invasion and glycolysis of nasopharyngeal carcinoma cells through inactivating the phosphatidylinositol 3 kinase/AKT signal pathway. Anticancer Drugs. 2020;31:932–41.

    Article  CAS  PubMed  Google Scholar 

  138. Ren J, Li W, Pan G, Huang F, Yang J, Zhang H, et al. miR-142-3p modulates cell invasion and migration via PKM2-mediated aerobic glycolysis in colorectal cancer. Anal Cell Pathol. 2021;2021:9927720.

    Article  Google Scholar 

  139. Zhu Z, Tang G, Yan J. MicroRNA-122 regulates docetaxel resistance of prostate cancer cells by regulating PKM2. Exp Ther Med. 2020;20:247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wu H, Du J, Li C, Li H, Guo H, Li Z. Kaempferol can reverse the 5-Fu resistance of colorectal cancer cells by inhibiting PKM2-mediated glycolysis. Int J Mol Sci. 2022;23:3544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang D, He Z, Shen Y, Wang J, Liu T, Jiang J. MiR-489-3p reduced pancreatic cancer proliferation and metastasis by targeting PKM2 and LDHA involving glycolysis. Front Oncol. 2021;11:651535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tamada M, Suematsu M, Saya H. Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells. Clin Cancer Res. 2012;18:5554–61.

    Article  CAS  PubMed  Google Scholar 

  143. Li RZ, Fan XX, Shi DF, Zhu GY, Wang YW, Luo LX, et al. Identification of a new pyruvate kinase M2 isoform (PKM2) activator for the treatment of non-small-cell lung cancer (NSCLC). Chem Biol Drug Des. 2018;92:1851–8.

    Article  CAS  PubMed  Google Scholar 

  144. Li Q, Cao L, Tian Y, Zhang P, Ding C, Lu W, et al. Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol Cell Proteom. 2018;17:1531–45.

    Article  CAS  Google Scholar 

  145. Chen L, Huang L, Gu Y, Cang W, Sun P, Xiang Y. Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 2022;23:11943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34.

    Article  CAS  PubMed  Google Scholar 

  147. Altinoz MA, Ozpinar A. Oxamate targeting aggressive cancers with special emphasis to brain tumors. Biomed Pharmacother. 2022;147:112686.

    Article  CAS  PubMed  Google Scholar 

  148. Gao S, Tu DN, Li H, Jiang JX, Cao X, You JB, et al. Pharmacological or genetic inhibition of LDHA reverses tumor progression of pediatric osteosarcoma. Biomed Pharmacother. 2016;81:388–93.

    Article  CAS  PubMed  Google Scholar 

  149. Gupta VK, Sharma NS, Durden B, Garrido VT, Kesh K, Edwards D, et al. Hypoxia-driven oncometabolite L-2HG maintains stemness-differentiation balance and facilitates immune evasion in pancreatic cancer. Cancer Res. 2021;81:4001–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fiume L, Vettraino M, Carnicelli D, Arfilli V, Di Stefano G, Brigotti M. Galloflavin prevents the binding of lactate dehydrogenase A to single stranded DNA and inhibits RNA synthesis in cultured cells. Biochem Biophys Res Commun. 2013;430:466–9.

    Article  CAS  PubMed  Google Scholar 

  151. Boudreau A, Purkey HE, Hitz A, Robarge K, Peterson D, Labadie S, et al. Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat Chem Biol. 2016;12:779–86.

    Article  CAS  PubMed  Google Scholar 

  152. Du P, Liao Y, Zhao H, Zhang J, Muyiti, Keremu, et al. ANXA2P2/miR-9/LDHA axis regulates Warburg effect and affects glioblastoma proliferation and apoptosis. Cell Signal. 2020;74:109718.

    Article  CAS  PubMed  Google Scholar 

  153. Tian Y, Chen YY, Han AL. MiR-1271 inhibits cell proliferation and metastasis by targeting LDHA in endometrial cancer. Eur Rev Med Pharm Sci. 2019;23:5648–56.

    CAS  Google Scholar 

  154. Singh M, Afonso J, Sharma D, Gupta R, Kumar V, Rani R, et al. Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin Cancer Biol. 2023;90:1–14.

    Article  CAS  PubMed  Google Scholar 

  155. Halestrap AP, Wilson MC. The monocarboxylate transporter family–role and regulation. IUBMB Life. 2012;64:109–19.

    Article  CAS  PubMed  Google Scholar 

  156. Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 2009;92:329–33.

    Article  CAS  PubMed  Google Scholar 

  157. Buyse C, Joudiou N, Warscotte A, Richiardone E, Mignion L, Corbet C, et al. Evaluation of syrosingopine, an MCT inhibitor, as potential modulator of tumor metabolism and extracellular acidification. Metabolites. 2022;12:557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Halford S, Veal GJ, Wedge SR, Payne GS, Bacon CM, Sloan P, et al. A Phase I dose-escalation study of AZD3965, an oral monocarboxylate transporter 1 inhibitor, in patients with advanced cancer. Clin Cancer Res. 2023;29:1429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Benyahia Z, Blackman M, Hamelin L, Zampieri LX, Capeloa T, Bedin ML, et al. In vitro and in vivo characterization of MCT1 inhibitor AZD3965 confirms preclinical safety compatible with breast cancer treatment. Cancers. 2021;13:569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Diers AR, Broniowska KA, Chang CF, Hogg N. Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition. Biochem J. 2012;444:561–71.

    Article  CAS  PubMed  Google Scholar 

  161. Zhao Z, Wu MS, Zou C, Tang Q, Lu J, Liu D, et al. Downregulation of MCT1 inhibits tumor growth, metastasis and enhances chemotherapeutic efficacy in osteosarcoma through regulation of the NF-kappaB pathway. Cancer Lett. 2014;342:150–8.

    Article  CAS  PubMed  Google Scholar 

  162. Fujiwara S, Wada N, Kawano Y, Okuno Y, Kikukawa Y, Endo S, et al. Lactate, a putative survival factor for myeloma cells, is incorporated by myeloma cells through monocarboxylate transporters 1. Exp Hematol Oncol. 2015;4:12.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jeon JY, Lee M, Whang SH, Kim JW, Cho A, Yun M. Regulation of acetate utilization by monocarboxylate transporter 1 (MCT1) in hepatocellular carcinoma (HCC). Oncol Res. 2018;26:71–81.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Quanz M, Bender E, Kopitz C, Grunewald S, Schlicker A, Schwede W, et al. Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance. Mol Cancer Ther. 2018;17:2285–96.

    Article  CAS  PubMed  Google Scholar 

  165. Hu KY, Wang de G, Liu PF, Cao YW, Wang YH, Yang XC, et al. Targeting of MCT1 and PFKFB3 influences cell proliferation and apoptosis in bladder cancer by altering the tumor microenvironment. Oncol Rep. 2016;36:945–51.

    Article  CAS  PubMed  Google Scholar 

  166. Nadai T, Narumi K, Furugen A, Saito Y, Iseki K, Kobayashi M. Pharmacological inhibition of MCT4 reduces 4-hydroxytamoxifen sensitivity by increasing HIF-1α protein expression in ER-positive MCF-7 breast cancer cells. Biol Pharm Bull. 2021;44:1247–53.

    Article  CAS  PubMed  Google Scholar 

  167. Wu DH, Liang H, Lu SN, Wang H, Su ZL, Zhang L, et al. miR-124 suppresses pancreatic ductal adenocarcinoma growth by regulating monocarboxylate transporter 1-mediated cancer lactate metabolism. Cell Physiol Biochem. 2018;50:924–35.

    Article  CAS  PubMed  Google Scholar 

  168. Romero-Cordoba SL, Rodriguez-Cuevas S, Bautista-Pina V, Maffuz-Aziz A, D’Ippolito E, Cosentino G, et al. Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci Rep. 2018;8:12252.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Zhao Y, Li W, Li M, Hu Y, Zhang H, Song G, et al. Targeted inhibition of MCT4 disrupts intracellular pH homeostasis and confers self-regulated apoptosis on hepatocellular carcinoma. Exp Cell Res. 2019;384:111591.

    Article  CAS  PubMed  Google Scholar 

  170. Dang CV. The interplay between MYC and HIF in the Warburg effect. Ernst Scher Found Symp Proc. 2007;4:35–53.

    Google Scholar 

  171. Hao X, Ren Y, Feng M, Wang Q, Wang Y. Metabolic reprogramming due to hypoxia in pancreatic cancer: Implications for tumor formation, immunity, and more. Biomed Pharmacother. 2021;141:111798.

    Article  CAS  PubMed  Google Scholar 

  172. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  173. Cavadas MA, Nguyen LK, Cheong A. Hypoxia-inducible factor (HIF) network: insights from mathematical models. Cell Commun Signal. 2013;11:42.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets. 2006;10:267–80.

    Article  CAS  PubMed  Google Scholar 

  175. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jaworska M, Szczudlo J, Pietrzyk A, Shah J, Trojan SE, Ostrowska B, et al. The Warburg effect: a score for many instruments in the concert of cancer and cancer niche cells. Pharmacol Rep. 2023;75:876–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Armstrong AJ, George DJ, Halabi S. Serum lactate dehydrogenase predicts for overall survival benefit in patients with metastatic renal cell carcinoma treated with inhibition of mammalian target of rapamycin. J Clin Oncol. 2012;30:3402–7.

    Article  CAS  PubMed  Google Scholar 

  178. Chae YC, Vaira V, Caino MC, Tang HY, Seo JH, Kossenkov AV, et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming. Cancer Cell. 2016;30:257–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39:171–83.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001;21:3436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, et al. Flavonoids targeting HIF-1: implications on cancer metabolism. Cancers. 2021;13:130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang M, Chen H, He X, Zhao X, Zhang H, Wang Y, et al. Artemisinin inhibits the development of esophageal cancer by targeting HIF-1alpha to reduce glycolysis levels. J Gastrointest Oncol. 2022;13:2144–53.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, et al. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer. 2017;117:1518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Thomas SL, Zhong D, Zhou W, Malik S, Liotta D, Snyder JP, et al. EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1. Cell Cycle. 2008;7:2409–17.

    Article  CAS  PubMed  Google Scholar 

  185. Chen Z, Zuo X, Zhang Y, Han G, Zhang L, Wu J, et al. MiR-3662 suppresses hepatocellular carcinoma growth through inhibition of HIF-1α-mediated Warburg effect. Cell Death Dis. 2018;9:549.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Liu L, Wang Y, Bai R, Yang K, Tian Z. MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation. Oncogenesis. 2016;5:e224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Xu J, Li X, Zhang P, Luo J, Mou E, Liu S. miR-143-5p suppresses breast cancer progression by targeting the HIF-1α-related GLUT1 pathway. Oncol Lett. 2022;23:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Purhonen J, Klefstrom J, Kallijarvi J. MYC-an emerging player in mitochondrial diseases. Front Cell Dev Biol. 2023;11:1257651.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wu Z, Wu J, Zhao Q, Fu S, Jin J. Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol. 2020;22:631–46.

    Article  CAS  PubMed  Google Scholar 

  190. Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol. 2015;43:11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gupta A, Ajith A, Singh S, Panday RK, Samaiya A, Shukla S. PAK2-c-Myc-PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect. Cell Death Dis. 2018;9:825.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Li J, Pan J, Liu Y, Luo X, Yang C, Xiao W, et al. 3-Bromopyruvic acid regulates glucose metabolism by targeting the c-Myc/TXNIP axis and induces mitochondria-mediated apoptosis in TNBC cells. Exp Ther Med. 2022;24:520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. He TL, Zhang YJ, Jiang H, Li XH, Zhu H, Zheng KL. The c-Myc-LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer. Med Oncol. 2015;32:187.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Gan L, Xiu R, Ren P, Yue M, Su H, Guo G, et al. Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of transporters. Oncogene. 2016;35:3037–48.

    Article  CAS  PubMed  Google Scholar 

  195. Dang CV, Kim JW, Gao P, Yustein J. The interplay between MYC and HIF in cancer. Nat Rev Cancer. 2008;8:51–6.

    Article  CAS  PubMed  Google Scholar 

  196. Zhang M, Fan HY, Li SC. Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma. Biomed Pharmacother. 2015;73:123–8.

    Article  CAS  PubMed  Google Scholar 

  197. Broecker-Preuss M, Becher-Boveleth N, Bockisch A, Duhrsen U, Muller S. Regulation of glucose uptake in lymphoma cell lines by c-MYC- and PI3K-dependent signaling pathways and impact of glycolytic pathways on cell viability. J Transl Med. 2017;15:158.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Kleszcz R, Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W. The inhibition of c-MYC transcription factor modulates the expression of glycolytic and glutaminolytic enzymes in FaDu hypopharyngeal carcinoma cells. Adv Clin Exp Med. 2018;27:735–42.

    Article  PubMed  Google Scholar 

  199. Hu C, Liu T, Zhang W, Sun Y, Jiang D, Zhang X, et al. miR-145 inhibits aerobic glycolysis and cell proliferation of cervical cancer by acting on MYC. FASEB J. 2023;37:e22839.

    Article  CAS  PubMed  Google Scholar 

  200. Wang F, Xia J, Wang N, Zong H. miR-145 inhibits proliferation and invasion of esophageal squamous cell carcinoma in part by targeting c-Myc. Onkologie. 2013;36:754–8.

    Article  PubMed  Google Scholar 

  201. Zhang W, Wang Q, Yu M, Wu N, Wang H. MicroRNA-145 function as a cell growth repressor by directly targeting c-Myc in human ovarian cancer. Technol Cancer Res Treat. 2014;13:161–8.

    Article  CAS  PubMed  Google Scholar 

  202. Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A, et al. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res. 2010;29:151.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Zhang XD, Qin ZH, Wang J. The role of p53 in cell metabolism. Acta Pharmacol Sin. 2010;31:1208–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64:2627–33.

    Article  CAS  PubMed  Google Scholar 

  205. Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol. 2008;10:611–8.

    Article  CAS  PubMed  Google Scholar 

  206. Nagarajan A, Dogra SK, Sun L, Gandotra N, Ho T, Cai G, et al. Paraoxonase 2 facilitates pancreatic cancer growth and metastasis by stimulating GLUT1-mediated glucose transport. Mol Cell. 2017;67:685–701.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Tennant DA, Duran RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis. 2009;30:1269–80.

    Article  CAS  PubMed  Google Scholar 

  208. Zawacka-Pankau J, Grinkevich VV, Hunten S, Nikulenkov F, Gluch A, Li H, et al. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J Biol Chem. 2011;286:41600–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Tang J, Chen L, Qin ZH, Sheng R. Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin. 2021;42:1547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126:107–20.

    Article  CAS  PubMed  Google Scholar 

  211. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275–83.

    Article  CAS  PubMed  Google Scholar 

  212. Zhao Y, Zhang L, Wu Y, Dai Q, Zhou Y, Li Z, et al. Selective anti-tumor activity of wogonin targeting the Warburg effect through stablizing p53. Pharmacol Res. 2018;135:49–59.

    Article  CAS  PubMed  Google Scholar 

  213. Dai Q, Yin Y, Liu W, Wei L, Zhou Y, Li Z, et al. Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells. Int J Biochem Cell Biol. 2013;45:1468–78.

    Article  CAS  PubMed  Google Scholar 

  214. Li L, Liang Y, Kang L, Liu Y, Gao S, Chen S, et al. Transcriptional regulation of the Warburg effect in cancer by SIX1. Cancer Cell. 2018;33:368–85.e7.

    Article  CAS  PubMed  Google Scholar 

  215. Yang X, Zhao H, Yang J, Ma Y, Liu Z, Li C, et al. MiR-150-5p regulates melanoma proliferation, invasion and metastasis via SIX1-mediated Warburg Effect. Biochem Biophys Res Commun. 2019;515:85–91.

    Article  CAS  PubMed  Google Scholar 

  216. Nie ZY, Liu XJ, Zhan Y, Liu MH, Zhang XY, Li ZY, et al. miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by targeting SIX1. Biosci Rep. 2019;39:BSR20190150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wang H, Xue W, Ouyang W, Jiang X, Jiang X. miR-23a-3p/SIX1 regulates glucose uptake and proliferation through GLUT3 in head and neck squamous cell carcinomas. J Cancer. 2020;11:2529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ge W, Meng L, Cao S, Hou C, Zhu X, Huang D, et al. The SIX1/LDHA axis promotes lactate accumulation and leads to NK cell dysfunction in pancreatic cancer. J Immunol Res. 2023;2023:6891636.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Qi H, Chen Z, Qin Y, Wang X, Zhang Z, Li Y. Tanshinone IIA inhibits cell growth by suppressing SIX1-induced aerobic glycolysis in non-small cell lung cancer cells. Oncol Lett. 2022;23:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Li Y, Huang H, Wu S, Zhou Y, Huang T, Jiang J. The role of RNA m6A modification in cancer glycolytic reprogramming. Curr Gene Ther. 2023;23:51–9.

    Article  PubMed  Google Scholar 

  221. Ma L, Xue X, Zhang X, Yu K, Xu X, Tian X, et al. The essential roles of m6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res. 2022;41:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Liu D, Li Z, Zhang K, Lu D, Zhou D, Meng Y. N6-methyladenosine reader YTHDF3 contributes to the aerobic glycolysis of osteosarcoma through stabilizing PGK1 stability. J Cancer Res Clin Oncol. 2023;149:4601–10.

    Article  CAS  PubMed  Google Scholar 

  223. Wang Q, Guo X, Li L, Gao Z, Su X, Ji M, et al. N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020;11:911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Niu Y, Lin Z, Wan A, Sun L, Yan S, Liang H, et al. Loss-of-function genetic screening identifies aldolase A as an essential driver for liver cancer cell growth under hypoxia. Hepatology. 2021;74:1461–79.

    Article  CAS  PubMed  Google Scholar 

  225. Ande SR, Padilla-Meier GP, Mishra S. Mutually exclusive acetylation and ubiquitylation among enzymes involved in glucose metabolism. Adipocyte. 2013;2:256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zheng S, Liang Y, Tan Y, Li L, Liu Q, Liu T, et al. Small tweaks, major changes: post-translational modifications that occur within M2 macrophages in the tumor microenvironment. Cancers. 2022;14:5532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Apostolidi M, Vathiotis IA, Muthusamy V, Gaule P, Gassaway BM, Rimm DL, et al. Targeting pyruvate kinase M2 phosphorylation reverses aggressive cancer phenotypes. Cancer Res. 2021;81:4346–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012;14:1295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Dang CV. PKM2 tyrosine phosphorylation and glutamine metabolism signal a different view of the Warburg effect. Sci Signal. 2009;2:pe75.

    Article  PubMed  Google Scholar 

  230. Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun. 2016;7:12431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Fan J, Hitosugi T, Chung TW, Xie J, Ge Q, Gu TL, et al. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD+ redox homeostasis in cancer cells. Mol Cell Biol. 2011;31:4938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Qian X, Li X, Shi Z, Xia Y, Cai Q, Xu D, et al. PTEN suppresses glycolysis by dephosphorylating and inhibiting autophosphorylated PGK1. Mol Cell. 2019;76:516–27.e7.

    Article  CAS  PubMed  Google Scholar 

  233. Li TY, Sun Y, Liang Y, Liu Q, Shi Y, Zhang CS, et al. ULK1/2 constitute a bifurcate node controlling glucose metabolic fluxes in addition to autophagy. Mol Cell. 2016;62:359–70.

    Article  CAS  PubMed  Google Scholar 

  234. Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep. 2023;56:618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Ci S, Xia W, Liang W, Qin L, Zhang Y, Dianov GL, et al. Src-mediated phosphorylation of GAPDH regulates its nuclear localization and cellular response to DNA damage. FASEB J. 2020;34:10443–61.

    Article  CAS  PubMed  Google Scholar 

  236. Hitosugi T, Zhou L, Fan J, Elf S, Zhang L, Xie J, et al. Tyr26 phosphorylation of PGAM1 provides a metabolic advantage to tumours by stabilizing the active conformation. Nat Commun. 2013;4:1790.

    Article  PubMed  Google Scholar 

  237. Sun M, Li L, Niu Y, Wang Y, Yan Q, Xie F, et al. PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism. Acta Pharm Sin B. 2023;13:157–73.

    Article  CAS  PubMed  Google Scholar 

  238. Zakrzewicz D, Didiasova M, Kruger M, Giaimo BD, Borggrefe T, Mieth M, et al. Protein arginine methyltransferase 5 mediates enolase-1 cell surface trafficking in human lung adenocarcinoma cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1816–27.

    Article  CAS  PubMed  Google Scholar 

  239. Zhong XY, Yuan XM, Xu YY, Yin M, Yan WW, Zou SW, et al. CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell Rep. 2018;24:3207–23.

    Article  CAS  PubMed  Google Scholar 

  240. Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, et al. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol. 2017;19:1358–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–9.

    Article  CAS  PubMed  Google Scholar 

  242. Hu H, Zhu W, Qin J, Chen M, Gong L, Li L, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology. 2017;65:515–28.

    Article  CAS  PubMed  Google Scholar 

  243. Wang S, Jiang B, Zhang T, Liu L, Wang Y, Wang Y, et al. Insulin and mTOR pathway regulate HDAC3-mediated deacetylation and activation of PGK1. PLoS Biol. 2015;13:e1002243.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Li T, Liu M, Feng X, Wang Z, Das I, Xu Y, et al. Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal. J Biol Chem. 2014;289:3775–85.

    Article  CAS  PubMed  Google Scholar 

  245. Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, et al. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol. 2010;42:1672–80.

    Article  CAS  PubMed  Google Scholar 

  246. Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell. 2013;52:340–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 2011;42:719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 2013;23:464–76.

    Article  CAS  PubMed  Google Scholar 

  249. Wang JH, Mao L, Wang J, Zhang X, Wu M, Wen Q, et al. Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination. Cell Oncol. 2023;46:465–80.

    Article  Google Scholar 

  250. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, et al. Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci. 2022;18:6210–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Lu K, Han D. A review of the mechanism of succinylation in cancer. Medicine. 2022;101:e31493.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Zhang C, Huang Z. KAT2A promotes the succinylation of PKM2 to inhibit its activity and accelerate glycolysis of gastric cancer. Mol Biotechnol. 2023 https://doi.org/10.1007/s12033-023-00778-z.

  254. Xiangyun Y, Xiaomin N, Linping G, Yunhua X, Ziming L, Yongfeng Y, et al. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget. 2017;8:6984–93.

    Article  PubMed  Google Scholar 

  255. Kurmi K, Hitosugi S, Wiese EK, Boakye-Agyeman F, Gonsalves WI, Lou Z, et al. Carnitine palmitoyltransferase 1A has a lysine succinyltransferase activity. Cell Rep. 2018;22:1365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Yang G, Yuan Y, Yuan H, Wang J, Yun H, Geng Y, et al. Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones and promotes tumorigenesis. EMBO Rep. 2021;22:e50967.

    Article  CAS  PubMed  Google Scholar 

  257. Huang S, Tang D, Dai Y. Metabolic functions of lysine 2-hydroxyisobutyrylation. Cureus. 2020;12:e9651.

    PubMed  PubMed Central  Google Scholar 

  258. Huang H, Tang S, Ji M, Tang Z, Shimada M, Liu X, et al. p300-mediated lysine 2-hydroxyisobutyrylation regulates glycolysis. Mol Cell. 2018;70:663–78.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Chen S, Li D, Zeng Z, Zhang W, Xie H, Tang J, et al. Analysis of proteome and post-translational modifications of 2-hydroxyisobutyrylation reveals the glycolysis pathway in oral adenoid cystic carcinoma. World J Surg Oncol. 2023;21:301.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Lu Y, Li X, Zhao K, Qiu P, Deng Z, Yao W, et al. Global landscape of 2-hydroxyisobutyrylation in human pancreatic cancer. Front Oncol. 2022;12:1001807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Parker MP, Peterson KR, Slawson C. O-GlcNAcylation and O-GlcNAc cycling regulate gene transcription: emerging roles in cancer. Cancers. 2021;13:1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd, et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 2012;337:975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Wang Y, Liu J, Jin X, Zhang D, Li D, Hao F, et al. O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proc Natl Acad Sci USA. 2017;114:13732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, et al. Ubiquitination links DNA damage and repair signaling to cancer metabolism. Int J Mol Sci. 2023;24:8441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Jiao L, Zhang HL, Li DD, Yang KL, Tang J, Li X, et al. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy. 2018;14:671–84.

    Article  CAS  PubMed  Google Scholar 

  266. Lee HJ, Li CF, Ruan D, He J, Montal ED, Lorenz S, et al. Non-proteolytic ubiquitination of Hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion. Nat Commun. 2019;10:2625.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Yuan P, Zhou Y, Wang R, Chen S, Wang Q, Xu Z, et al. TRIM58 interacts with pyruvate kinase M2 to inhibit tumorigenicity in human osteosarcoma cells. Biomed Res Int. 2020;2020:8450606.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Shang Y, He J, Wang Y, Feng Q, Zhang Y, Guo J, et al. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma. Oncogene. 2017;36:4191–200.

    Article  CAS  PubMed  Google Scholar 

  269. Yu S, Zang W, Qiu Y, Liao L, Zheng X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene. 2022;41:46–56.

    Article  CAS  PubMed  Google Scholar 

  270. Yang L, Zhang J, Hu C, Chen X, Yang Y, Tang H, et al. Nuclear translocation of PKM2 mediates keratinocyte metabolic reprogramming in psoriasis. Exp Dermatol. 2023;32:1960–70.

    Article  CAS  PubMed  Google Scholar 

  271. Zhan P, Wang Y, Zhao S, Liu C, Wang Y, Wen M, et al. FBXW7 negatively regulates ENO1 expression and function in colorectal cancer. Lab Invest. 2015;95:995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Zhang G, Zhao X, Liu W. NEDD4L inhibits glycolysis and proliferation of cancer cells in oral squamous cell carcinoma by inducing ENO1 ubiquitination and degradation. Cancer Biol Ther. 2022;23:243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Tian M, Zhu R, Ding F, Liu Z. Ubiquitin-specific peptidase 46 promotes tumor metastasis through stabilizing ENO1 in human esophageal squamous cell carcinoma. Exp Cell Res. 2020;395:112188.

    Article  CAS  PubMed  Google Scholar 

  274. Celen AB, Sahin U. Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. FEBS J. 2020;287:3110–40.

    Article  CAS  PubMed  Google Scholar 

  275. Barroso-Gomila O, Trulsson F, Muratore V, Canosa I, Merino-Cacho L, Cortazar AR, et al. Identification of proximal SUMO-dependent interactors using SUMO-ID. Nat Commun. 2021;12:6671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. An S, Huang L, Miao P, Shi L, Shen M, Zhao X, et al. Small ubiquitin-like modifier 1 modification of pyruvate kinase M2 promotes aerobic glycolysis and cell proliferation in A549 human lung cancer cells. Onco Targets Ther. 2018;11:2097–109.

    Article  PubMed  PubMed Central  Google Scholar 

  277. Shangguan X, He J, Ma Z, Zhang W, Ji Y, Shen K, et al. SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nat Commun. 2021;12:1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 2023;24:2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Sang R, Fan R, Deng A, Gou J, Lin R, Zhao T, et al. Degradation of hexokinase 2 blocks glycolysis and induces GSDME-dependent pyroptosis to amplify immunogenic cell death for breast cancer therapy. J Med Chem. 2023;66:8464–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (2019YFA0802400), the National Natural Science Foundation of China (82000237 and 32171437), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB310017), Gusu Key Health Talent Program of Suzhou (GSWS2022122), the Priority Academic Program Development (PAPD) of the Jiangsu Higher Education Institutions of China, and Gusu Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-qiang Xu or Jing-jing Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Lu, Cp., Xu, Gq. et al. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01264-1

Keywords

Search

Quick links