Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of a selective TRF2 inhibitor FKB04 induced telomere shortening and senescence in liver cancer cells

Abstract

Telomere repeat binding factor 2 (TRF2), a critical element of the shelterin complex, plays a vital role in the maintenance of genome integrity. TRF2 overexpression is found in a wide range of malignant cancers, whereas its down-regulation could cause cell death. Despite its potential role, the selectively small-molecule inhibitors of TRF2 and its therapeutic effects on liver cancer remain largely unknown. Our clinical data combined with bioinformatic analysis demonstrated that TRF2 is overexpressed in liver cancer and that high expression is associated with poor prognosis. Flavokavain B derivative FKB04 potently inhibited TRF2 expression in liver cancer cells while having limited effects on the other five shelterin subunits. Moreover, FKB04 treatment induced telomere shortening and increased the amounts of telomere-free ends, leading to the destruction of T-loop structure. Consequently, FKB04 promoted liver cancer cell senescence without modulating apoptosis levels. In corroboration with these findings, FKB04 inhibited tumor cell growth by promoting telomeric TRF2 deficiency-induced telomere shortening in a mouse xenograft tumor model, with no obvious side effects. These results demonstrate that TRF2 is a potential therapeutic target for liver cancer and suggest that FKB04 may be a selective small-molecule inhibitor of TRF2, showing promise in the treatment of liver cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRF2 is a valuable predictive marker in liver cancer progression and prognosis.
Fig. 2: FKB04 induces a senescent phenotype in liver cancer cells.
Fig. 3: FKB04 disrupts the telomere maintenance mechanism in liver cancer cells.
Fig. 4: FKB04 does not cause substantial telomeric DNA damage but causes T-loop deficiency.
Fig. 5: FKB04 impairs the protective effect of TRF2 on telomeres.
Fig. 6: FKB04 inhibits the growth of Huh-7 xenograft tumors in mice by promoting TRF2 function deficiency.

Similar content being viewed by others

References

  1. Wang C, Cao Y, Yang C, Bernards R, Qin W. Exploring liver cancer biology through functional genetic screens. Nat Rev Gastroenterol Hepatol. 2021;18:690–704.

    Article  PubMed  Google Scholar 

  2. Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 2021;21:541–57.

    Article  CAS  PubMed  Google Scholar 

  3. Alemi F, Malakoti F, Vaghari-Tabari M, Soleimanpour J, Shabestani N, Sadigh A, et al. DNA damage response signaling pathways as important targets for combination therapy and chemotherapy sensitization in osteosarcoma. J Cell Physiol. 2022;237:2374–86.

    Article  CAS  PubMed  Google Scholar 

  4. Ruman U, Fakurazi S, Masarudin M, Hussein M. Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. Int J Nanomed. 2020;15:1437–56.

    Article  CAS  Google Scholar 

  5. Ningarhari M, Caruso S, Hirsch T, Bayard Q, Franconi A, Védie A, et al. Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J Hepatol. 2021;74:1155–66.

    Article  CAS  PubMed  Google Scholar 

  6. Lin S, Nascimento E, Gajera C, Chen L, Neuhöfer P, Garbuzov A, et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature. 2018;556:244–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sirma H, Kumar M, Meena JK, Witt B, Weise JM, Lechel A, et al. The promoter of human telomerase reverse transcriptase is activated during liver regeneration and hepatocyte proliferation. Gastroenterology. 2011;141:326–37, 337.e1-3.

    Article  CAS  PubMed  Google Scholar 

  8. Amir M, Khan P, Queen A, Dohare R, Alajmi M, Hussain A, et al. Structural features of nucleoprotein CST/shelterin complex involved in the telomere maintenance and its association with disease mutations. Cells. 2020;9:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davinelli S, Trichopoulou A, Corbi G, De Vivo I, Scapagnini G. The potential nutrigeroprotective role of Mediterranean diet and its functional components on telomere length dynamics. Ageing Res Rev. 2019;49:1–10.

    Article  CAS  PubMed  Google Scholar 

  10. Yu E, Cheung I, Feng Y, Rabie M, Roboz G, Guzman M, et al. Telomere trimming and DNA damage as signatures of high risk neuroblastoma. Neoplasia. 2019;21:689–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nguyen L, Zhao J, Cao D, Dang X, Wang L, Lian J, et al. Inhibition of TRF2 accelerates telomere attrition and DNA damage in naïve CD4 T cells during HCV infection. Cell Death Dis. 2018;9:900.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nguyen L, Nguyen L, Zhao J, Schank M, Dang X, Cao D, et al. TRF2 inhibition rather than telomerase disruption drives CD4T cell dysfunction during chronic viral infection. J Cell Sci. 2022;135:jcs259481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kar M, Sultania M, Roy S, Padhi S, Banerjee B. TRF2 overexpression at the surgical resection margin: a potential predictive biomarker in oral squamous cell carcinoma for recurrence. Indian J Surg Oncol. 2021;12:46–51.

    Article  PubMed  Google Scholar 

  14. Ozden S, Tiber P, Ozgen Z, Ozyurt H, Serakinci N, Orun O. Expression of TRF2 and its prognostic relevance in advanced stage cervical cancer patients. Biol Res. 2014;47:61.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Dong Y, Guo T, Yang C, Chen Y, Sun H. N-terminal modified cyclopeptidic mimetics of Apollo as inhibitors of TRF2. Bioorg Med Chem Lett. 2020;30:127401.

    Article  CAS  PubMed  Google Scholar 

  16. Miyata K, Ukawa M, Mohri K, Fujii K, Yamada M, Tanishita S, et al. Biocompatible polymers modified with d-octaarginine as an absorption enhancer for nasal peptide delivery. Bioconjug Chem. 2018;29:1748–55.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng X, Nie X, Fang Y, Zhang Z, Xiao Y, Mao Z, et al. A cisplatin derivative tetra-Pt(bpy) as an oncotherapeutic agent for targeting ALT cancer. J Natl Cancer Inst. 2017;109. https://doi.org/10.1093/jnci/djx061.

  18. Ge Y, Wu S, Xue Y, Tao J, Li F, Chen Y, et al. Preferential extension of short telomeres induced by low extracellular pH. Nucleic Acids Res. 2016;44:8086–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen Z, Zheng R, Yang H, Xing S, Jin X, Yan H, et al. G-quadruplex stabilizer Tetra-Pt(bpy) disrupts telomere maintenance and impairs FAK-mediated migration of telomerase-positive cells. Int J Biol Macromol. 2022;213:858–70.

    Article  CAS  PubMed  Google Scholar 

  20. Qiu Y, Yan H, Zheng R, Chen X, Wang Y, Yan Q, et al. cyy260 suppresses the proliferation, migration and tumor growth of osteosarcoma by targeting PDGFR-β signaling pathway. Chem Biol Interact. 2022;367:110200.

    Article  CAS  PubMed  Google Scholar 

  21. Dinami R, Petti E, Porru M, Rizzo A, Ganci F, Sacconi A, et al. TRF2 cooperates with CTCF for controlling the oncomiR-193b-3p in colorectal cancer. Cancer Lett. 2022;533:215607.

    Article  CAS  PubMed  Google Scholar 

  22. Kim Y, Jee H, Um J, Kim Y, Bae S, Yun J. Cooperation between p21 and Akt is required for p53-dependent cellular senescence. Aging Cell. 2017;16:1094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heba A, Toupance S, Arnone D, Peyrin-Biroulet L, Benetos A, Ndiaye N. Telomeres: new players in immune-mediated inflammatory diseases? J Autoimmun. 2021;123:102699.

    Article  CAS  PubMed  Google Scholar 

  24. Tao L, Zhang W, Zhang Y, Zhang M, Zhang Y, Niu X, et al. Caffeine promotes the expression of telomerase reverse transcriptase to regulate cellular senescence and aging. Food Funct. 2021;12:2914–24.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Zhang T, Ge Y, Tang M, Ma W, Zhang Q, et al. 2D gel electrophoresis reveals dynamics of t-loop formation during the cell cycle and t-loop in maintenance regulated by heterochromatin state. J Biol Chem. 2019;294:6645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Timashev L, Babcock H, Zhuang X, de Lange T. The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes Dev. 2017;31:578–89.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hu X, Lv X, Wang R, Long H, Feng J, Wang B, et al. Optimization of N-phenylpropenoyl-l-amino acids as potent and selective inducible nitric oxide synthase inhibitors for Parkinson’s disease. J Med Chem. 2021;64:7760–77.

    Article  CAS  PubMed  Google Scholar 

  28. Zizza P, Dinami R, Porru M, Cingolani C, Salvati E, Rizzo A, et al. TRF2 positively regulates SULF2 expression increasing VEGF-A release and activity in tumor microenvironment. Nucleic Acids Res. 2019;47:3365–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52:223–47.

    Article  PubMed  Google Scholar 

  30. Diehl M, Idowu M, Kimmelshue K, York T, Jackson-Cook C, Turner K, et al. Elevated TRF2 in advanced breast cancers with short telomeres. Breast Cancer Res Treat. 2011;127:623–30.

    Article  CAS  PubMed  Google Scholar 

  31. El Maï M, Wagner K, Michiels J, Ambrosetti D, Borderie A, Destree S, et al. The telomeric protein TRF2 regulates angiogenesis by binding and activating the PDGFRβ promoter. Cell Rep. 2014;9:1047–60.

    Article  PubMed  Google Scholar 

  32. Biroccio A, Rizzo A, Elli R, Koering C, Belleville A, Benassi B, et al. TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells. Eur J Cancer. 2006;42:1881–8.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Wu X. Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review). Oncol Rep. 2021;46:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Denham J, Sellami M. Exercise training increases telomerase reverse transcriptase gene expression and telomerase activity: A systematic review and meta-analysis. Ageing Res Rev. 2021;70:101411.

    Article  CAS  PubMed  Google Scholar 

  35. Guo T, Dong Y, Chen Y, Liu L, Sun H. Development and optimization of a cascade of screening assays for inhibitors of TRF2. Anal Biochem. 2020;602:113796.

    Article  CAS  PubMed  Google Scholar 

  36. El Maï M, Janho Dit Hreich S, Gaggioli C, Roisin A, Wagner N, Ye J, et al. A novel screen for expression regulators of the telomeric protein TRF2 identified small molecules that impair TRF2 dependent immunosuppression and tumor growth. Cancers. 2021;13:2998.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Choubey D, Panchanathan R. IFI16, an amplifier of DNA-damage response: role in cellular senescence and aging-associated inflammatory diseases. Ageing Res Rev. 2016;28:27–36.

    Article  CAS  PubMed  Google Scholar 

  38. Doksani Y, Wu J, de Lange T, Zhuang X. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell. 2013;155:345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Ly D, Low R, Frölich S, Bartolec T, Kafer G, Pickett H, et al. Telomere loop dynamics in chromosome end protection. Mol Cell. 2018;71:510–25.e6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82273788, 81973168, 82273995), the Natural Science Foundation of Zhejiang Province (LZ22H300002), Wenzhou Science and Technology Plan Project (Y2023180, Y20220200, Y20220195), and Wenzhou Key Laboratory of Research and Transformation of Chinese Medicine. We also thank the Scientific Research Center of Wenzhou Medical University for the consultation and instrument availability that supported this work.

Author information

Authors and Affiliations

Authors

Contributions

ZGL and XHZ designed the study and supervised the experimental work; YDQ, QY, Yi Wang, YFY, Yan Wang, MYW, PPW, and DLW performed experiments; SYZ, HY, and JR analyzed data; ZGL, XHZ, and YDQ wrote the manuscript; YJZ, LHH, NC, and KW polished the language of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jing Ruan, Xiao-hui Zheng or Zhi-guo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Yd., Yan, Q., Wang, Y. et al. Discovery of a selective TRF2 inhibitor FKB04 induced telomere shortening and senescence in liver cancer cells. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01243-6

Keywords

Search

Quick links