Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Review Article
  • Published:

Chemical targeting of G-quadruplexes in telomeres and beyond for molecular cancer therapeutics

Abstract

G-quadruplexes (G4s) are higher-order structures formed by guanine-rich sequences of nucleic acids, such as the telomeric 5′-TTAGGG-3′/5′-UUAGGG-3′ repeats and those in gene regulatory regions. G4s regulate various biological events, including replication, transcription, and translation. Imbalanced G4 dynamics is associated with diseases, such as cancer and neurodegenerative diseases. Telomestatin is a natural macrocyclic compound derived from Streptomyces anulatus 3533-SV4. It interacts with the guanine quartet via π-π stacking and potently stabilizes G4. Because G4 stabilization at the telomeric repeat inhibits the telomere-synthesizing enzyme telomerase, telomestatin was originally identified as a telomerase inhibitor. Whereas non-toxic doses of telomestatin induce gradual shortening of telomeres and eventual crisis in human cancer cells, higher doses trigger prompt replication stress and DNA damage responses, resulting in acute cell death. Suppression of the transcription and translation of G4-containing genes is also implicated in the anticancer effects of telomestatin. Because telomestatin is rare, labile, and insoluble, synthetic oxazole telomestatin derivatives have been developed and verified for their therapeutic efficacies in preclinical cancer models. Furthermore, a variety of G4-stabilizing compounds have been reported as promising seeds for molecular cancer therapeutics. To improve the design of future clinical studies, it will be important to identify predictive biomarkers of drug efficacy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52:223–47.

    Article  PubMed  CAS  Google Scholar 

  2. Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34:1565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33:787–91.

    Article  CAS  PubMed  Google Scholar 

  4. Bell RJ, Rube HT, Xavier-Magalhaes A, Costa BM, Mancini A, Song JS, et al. Understanding TERT promoter mutations: a common path to immortality. Mol Cancer Res. 2016;14:315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr., et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA. 2013;110:6021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017;49:349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med. 1999;5:1164–70.

    Article  CAS  PubMed  Google Scholar 

  8. Strahl C, Blackburn EH. The effects of nucleoside analogs on telomerase and telomeres in Tetrahymena. Nucleic Acids Res. 1994;22:893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naasani I, Seimiya H, Tsuruo T. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem Biophys Res Commun. 1998;249:391–6.

    Article  CAS  PubMed  Google Scholar 

  10. Ueno T, Takahashi H, Oda M, Mizunuma M, Yokoyama A, Goto Y, et al. Inhibition of human telomerase by rubromycins: implication of spiroketal system of the compounds as an active moiety. Biochemistry. 2000;39:5995–6002.

    Article  CAS  PubMed  Google Scholar 

  11. Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, Priepke H, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 2001;20:6958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seimiya H, Muramatsu Y, Ohishi T, Tsuruo T. Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell. 2005;7:25–37.

    Article  CAS  PubMed  Google Scholar 

  13. Seimiya H, Oh-hara T, Suzuki T, Naasani I, Shimazaki T, Tsuchiya K, et al. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors MST-312, MST-295, and MST-199. Mol Cancer Ther. 2002;1:657–65.

    CAS  PubMed  Google Scholar 

  14. Nakai R, Ishida H, Asai A, Ogawa H, Yamamoto Y, Kawasaki H, et al. Telomerase inhibitors identified by a forward chemical genetics approach using a yeast strain with shortened telomere length. Chem Biol. 2006;13:183–90.

    Article  CAS  PubMed  Google Scholar 

  15. Nakai R, Kakita S, Asai A, Chiba S, Akinaga S, Mizukami T, et al. Chrolactomycin, a novel antitumor antibiotic produced by Streptomyces sp. J antibiotics. 2001;54:836–9.

    Article  CAS  Google Scholar 

  16. Dikmen ZG, Gellert GC, Jackson S, Gryaznov S, Tressler R, Dogan P, et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 2005;65:7866–73.

    Article  CAS  PubMed  Google Scholar 

  17. Chiappori AA, Kolevska T, Spigel DR, Hager S, Rarick M, Gadgeel S, et al. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann Oncol. 2015;26:354–62.

    Article  CAS  PubMed  Google Scholar 

  18. Fujiwara C, Muramatsu Y, Nishii M, Tokunaka K, Tahara H, Ueno M, et al. Cell-based chemical fingerprinting identifies telomeres and lamin A as modifiers of DNA damage response in cancer cells. Sci Rep. 2018;8:14827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Shin-ya K, Wierzba K, Matsuo K, Ohtani T, Yamada Y, Furihata K, et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc. 2001;123:1262–3.

    Article  CAS  PubMed  Google Scholar 

  20. Doi T, Yoshida M, Shin-ya K, Takahashi T. Total synthesis of (R)-telomestatin. Org Lett. 2006;8:4165–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K, Hurley LH. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J Am Chem Soc. 2002;124:2098–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gellert M, Lipsett MN, Davies DR. Helix formation by guanylic acid. Proc Natl Acad Sci USA. 1962;48:2013–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988;334:364–6.

    Article  CAS  PubMed  Google Scholar 

  24. Davis JT. G-quartets 40 years later: from 5’-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed Engl. 2004;43:668–98.

    Article  CAS  PubMed  Google Scholar 

  25. Williamson JR, Raghuraman MK, Cech TR. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell. 1989;59:871–80.

    Article  CAS  PubMed  Google Scholar 

  26. Phan AT, Patel DJ. Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: distinct topologies, thermodynamic properties, and folding/unfolding kinetics. J Am Chem Soc. 2003;125:15021–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guedin A, Gros J, Alberti P, Mergny JL. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010;38:7858–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Puig Lombardi E, Holmes A, Verga D, Teulade-Fichou MP, Nicolas A, Londono-Vallejo A. Thermodynamically stable and genetically unstable G-quadruplexes are depleted in genomes across species. Nucleic Acids Res. 2019;47:6098–113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA. 2001;98:8572–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biffi G, Tannahill D, McCafferty J, Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 2013;5:182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Biffi G, Di Antonio M, Tannahill D, Balasubramanian S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem. 2014;6:75–80.

    Article  CAS  PubMed  Google Scholar 

  32. Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–13.

    Article  CAS  PubMed  Google Scholar 

  33. Huppert JL, Bugaut A, Kumari S, Balasubramanian S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 2008;36:6260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eddy J, Maizels N. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res. 2008;36:1321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eddy J, Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006;34:3887–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hansel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016;48:1267–72.

    Article  CAS  PubMed  Google Scholar 

  37. Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014;507:195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang E, Thombre R, Shah Y, Latanich R, Wang J. G-Quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Res. 2021;49:4816–30.

  39. Guo JU, Bartel DP. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science. 2016;353:aaf5371.

  40. Prorok P, Artufel M, Aze A, Coulombe P, Peiffer I, Lacroix L, et al. Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun. 2019;10:3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hirashima K, Seimiya H. Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo. Nucleic Acids Res. 2015;43:2022–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okamoto K, Seimiya H. Revisiting telomere shortening in cancer. Cells 2019;8:107.

  43. Matsumoto K, Okamoto K, Okabe S, Fujii R, Ueda K, Ohashi K, et al. G-quadruplex-forming nucleic acids interact with splicing factor 3B subunit 2 and suppress innate immune gene expression. Genes Cells. 2021;26:65–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rossetti L, Cacchione S, Fua M, Savino M. Nucleosome assembly on telomeric sequences. Biochemistry. 1998;37:6727–37.

    Article  CAS  PubMed  Google Scholar 

  45. Kim MY, Gleason-Guzman M, Izbicka E, Nishioka D, Hurley LH. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res. 2003;63:3247–56.

    CAS  PubMed  Google Scholar 

  46. De Cian A, Cristofari G, Reichenbach P, De Lemos E, Monchaud D, Teulade-Fichou MP, et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci USA. 2007;104:17347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Doi T, Shibata K, Yoshida M, Takagi M, Tera M, Nagasawa K, et al. (S)-stereoisomer of telomestatin as a potent G-quadruplex binder and telomerase inhibitor. Org Biomol Chem. 2011;9:387–93.

    Article  CAS  PubMed  Google Scholar 

  48. Nakajima A, Tauchi T, Sashida G, Sumi M, Abe K, Yamamoto K, et al. Telomerase inhibition enhances apoptosis in human acute leukemia cells: possibility of antitelomerase therapy. Leukemia. 2003;17:560–7.

    Article  CAS  PubMed  Google Scholar 

  49. Tauchi T, Shin-Ya K, Sashida G, Sumi M, Nakajima A, Shimamoto T, et al. Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: involvement of ATM-dependent DNA damage response pathways. Oncogene. 2003;22:5338–47.

    Article  CAS  PubMed  Google Scholar 

  50. Binz N, Shalaby T, Rivera P, Shin-ya K, Grotzer MA. Telomerase inhibition, telomere shortening, cell growth suppression and induction of apoptosis by telomestatin in childhood neuroblastoma cells. Eur J Cancer. 2005;41:2873–81.

    Article  CAS  PubMed  Google Scholar 

  51. Shammas MA, Shmookler Reis RJ, Li C, Koley H, Hurley LH, Anderson KC, et al. Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin Cancer Res. 2004;10:770–6.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang L, Tamura K, Shin-ya K, Takahashi H. The telomerase inhibitor telomestatin induces telomere shortening and cell death in Arabidopsis. Biochim Biophys Acta. 2006;1763:39–44.

    Article  CAS  PubMed  Google Scholar 

  53. Gomez D, O’Donohue MF, Wenner T, Douarre C, Macadre J, Koebel P, et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res. 2006;66:6908–12.

    Article  CAS  PubMed  Google Scholar 

  54. Gomez D, Wenner T, Brassart B, Douarre C, O’Donohue MF, El Khoury V, et al. Telomestatin-induced telomere uncapping is modulated by POT1 through G-overhang extension in HT1080 human tumor cells. J Biol Chem. 2006;281:38721–9.

    Article  CAS  PubMed  Google Scholar 

  55. Tahara H, Shin-Ya K, Seimiya H, Yamada H, Tsuruo T, Ide T. G-Quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3’ telomeric overhang in cancer cells. Oncogene. 2006;25:1955–66.

    Article  CAS  PubMed  Google Scholar 

  56. van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92:401–13.

    Article  PubMed  Google Scholar 

  57. Celli GB, de Lange T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol. 2005;7:712–8.

    Article  CAS  PubMed  Google Scholar 

  58. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  CAS  PubMed  Google Scholar 

  59. Miyazaki T, Pan Y, Joshi K, Purohit D, Hu B, Demir H, et al. Telomestatin impairs glioma stem cell survival and growth through the disruption of telomeric G-quadruplex and inhibition of the proto-oncogene, c-Myb. Clin Cancer Res. 2012;18:1268–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hasegawa D, Okabe S, Okamoto K, Nakano I, Shin-ya K, Seimiya H. G-quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells. Biochem Biophys Res Commun. 2016;471:75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kanoh Y, Matsumoto S, Fukatsu R, Kakusho N, Kono N, Renard-Guillet C, et al. Rif1 binds to G quadruplexes and suppresses replication over long distances. Nat Struct Mol Biol. 2015;22:889–97.

    Article  CAS  PubMed  Google Scholar 

  62. Kobayashi S, Fukatsu R, Kanoh Y, Kakusho N, Matsumoto S, Chaen S, et al. Both a unique motif at the C Terminus and an N-Terminal HEAT repeat contribute to G-Quadruplex binding and origin regulation by the Rif1 protein. Mol Cell Biol. 2019;39:e00364–18.

  63. Wu Y, Shin-ya K, Brosh RM Jr. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol. 2008;28:4116–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bharti SK, Sommers JA, George F, Kuper J, Hamon F, Shin-ya K, et al. Specialization among iron-sulfur cluster helicases to resolve G-quadruplex DNA structures that threaten genomic stability. J Biol Chem. 2013;288:28217–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Magis A, Manzo SG, Russo M, Marinello J, Morigi R, Sordet O, et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc Natl Acad Sci USA. 2019;116:816–25.

    Article  PubMed  CAS  Google Scholar 

  66. Rodriguez R, Miller KM, Forment JV, Bradshaw CR, Nikan M, Britton S, et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol. 2012;8:301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gray LT, Vallur AC, Eddy J, Maizels N. G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat Chem Biol. 2014;10:313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnson JE, Cao K, Ryvkin P, Wang LS, Johnson FB. Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Res. 2010;38:1114–22.

    Article  CAS  PubMed  Google Scholar 

  69. Qin Y, Fortin JS, Tye D, Gleason-Guzman M, Brooks TA, Hurley LH. Molecular cloning of the human platelet-derived growth factor receptor beta (PDGFR-beta) promoter and drug targeting of the G-quadruplex-forming region to repress PDGFR-beta expression. Biochemistry. 2010;49:4208–19.

    Article  CAS  PubMed  Google Scholar 

  70. Linder J, Garner TP, Williams HE, Searle MS, Moody CJ. Telomestatin: formal total synthesis and cation-mediated interaction of its seco-derivatives with G-quadruplexes. J Am Chem Soc. 2011;133:1044–51.

    Article  CAS  PubMed  Google Scholar 

  71. Iida K, Tera M, Hirokawa T, Shin-ya K, Nagasawa K. G-quadruplex recognition by macrocyclic hexaoxazole (6OTD) dimer: greater selectivity than monomer. Chem Commun (Camb). 2009;42:6481–3.

  72. Iida K, Tera M, Shin-Ya K, Nagasawa K. G-quadruplex recognition by macrocyclic hexaoxazole (6OTD) dimer. Nucleic Acids Symp Ser (Oxf). 2009;53:233–4.

  73. Tera M, Iida K, Ishizuka H, Takagi M, Suganuma M, Doi T, et al. Synthesis of a potent G-quadruplex-binding macrocyclic heptaoxazole. Chembiochem: a Eur J Chem Biol. 2009;10:431–5.

    Article  CAS  Google Scholar 

  74. Tera M, Iida K, Shin-ya K, Nagasawa K. Synthesis of potent G-quadruplex binders of macrocyclic heptaoxazole and evaluation of their activities. Nucleic Acids Symp Ser (Oxf). 2009;53:231–2.

  75. Tera M, Ishizuka H, Takagi M, Suganuma M, Shin-ya K, Nagasawa K. Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders. Angew Chem Int Ed Engl. 2008;47:5557–60.

    Article  CAS  PubMed  Google Scholar 

  76. Chung WJ, Heddi B, Tera M, Iida K, Nagasawa K, Phan AT. Solution structure of an intramolecular (3 + 1) human telomeric G-quadruplex bound to a telomestatin derivative. J Am Chem Soc. 2013;135:13495–501.

    Article  CAS  PubMed  Google Scholar 

  77. Nakamura T, Iida K, Tera M, Shin-ya K, Seimiya H, Nagasawa K. A caged ligand for a telomeric G-quadruplex. Chembiochem: a Eur J Chem Biol. 2012;13:774–7.

    Article  CAS  Google Scholar 

  78. Nakamura T, Okabe S, Yoshida H, Iida K, Ma Y, Sasaki S, et al. Targeting glioma stem cells in vivo by a G-quadruplex-stabilizing synthetic macrocyclic hexaoxazole. Sci Rep. 2017;7:3605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Li Q, Xiang JF, Yang QF, Sun HX, Guan AJ, Tang YL. G4LDB: a database for discovering and studying G-quadruplex ligands. Nucleic Acids Res. 2013;41:D1115–23.

    Article  CAS  PubMed  Google Scholar 

  80. Kosiol N, Juranek S, Brossart P, Heine A, Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol Cancer. 2021;20:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Drygin D, Siddiqui-Jain A, O’Brien S, Schwaebe M, Lin A, Bliesath J, et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 2009;69:7653–61.

    Article  CAS  PubMed  Google Scholar 

  82. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O’Neil NJ, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun. 2017;8:14432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zimmer J, Tacconi EMC, Folio C, Badie S, Porru M, Klare K, et al. Targeting BRCA1 and BRCA2 deficiencies with G-quadruplex-interacting compounds. Mol Cell. 2016;61:449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang Y, Yang J, Wild AT, Wu WH, Shah R, Danussi C, et al. G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat Commun. 2019;10:943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Khot A, Brajanovski N, Cameron DP, Hein N, Maclachlan KH, Sanij E, et al. First-in-human RNA polymerase I transcription inhibitor CX-5461 in patients with advanced hematologic cancers: results of a phase I dose-escalation study. Cancer Disco. 2019;9:1036–49.

    Article  CAS  Google Scholar 

  86. Bruno PM, Lu M, Dennis KA, Inam H, Moore CJ, Sheehe J, et al. The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning. Proc Natl Acad Sci USA. 2020;117:4053–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Marchetti C, Zyner KG, Ohnmacht SA, Robson M, Haider SM, Morton JP, et al. Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J Med Chem. 2018;61:2500–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature. 2014;513:65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sauer M, Juranek SA, Marks J, De Magis A, Kazemier HG, Hilbig D, et al. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions. Nat Commun. 2019;10:2421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Amagai K, Ikeda H, Hashimoto J, Kozone I, Izumikawa M, Kudo F, et al. Identification of a gene cluster for telomestatin biosynthesis and heterologous expression using a specific promoter in a clean host. Sci Rep. 2017;7:3382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Naasani I, Seimiya H, Yamori T, Tsuruo T. FJ5002: a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res. 1999;59:4004–11.

    CAS  PubMed  Google Scholar 

  92. Franceschin M, Rossetti L, D’Ambrosio A, Schirripa S, Bianco A, Ortaggi G, et al. Natural and synthetic G-quadruplex interactive berberine derivatives. Bioorg Med Chem Lett. 2006;16:1707–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (20K21555 and 20H04789 to HS), grants from the Translational Research Program; Strategic Promotion for Practical Application of Innovative Medical Technology (20lm0203003j0004 to HS and KN) and Project for Cancer Research and Therapeutic Evolution (21cm0106184h0001 to HS and KN), Japan Agency for Medical Research and Development, and funding from Nippon Foundation to HS. We thank Joe Barber Jr., PhD, from Edanz (https://www.jp.edanz.com/ac) for editing a draft of this paper.

Author information

Authors and Affiliations

Authors

Contributions

HS wrote the manuscript in consultation with KN and KS. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Hiroyuki Seimiya.

Ethics declarations

Conflict of interest

HS received a research grant from the Nippon Foundation. KN and KS have no competing interests to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seimiya, H., Nagasawa, K. & Shin-ya, K. Chemical targeting of G-quadruplexes in telomeres and beyond for molecular cancer therapeutics. J Antibiot 74, 617–628 (2021). https://doi.org/10.1038/s41429-021-00454-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00454-x

This article is cited by

Search

Quick links