Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PHPB ameliorates memory deficits and reduces oxidative injury in Alzheimer’s disease mouse model by activating Nrf2 signaling pathway

Abstract

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in elderly people and substantially affects patient quality of life. Oxidative stress is considered a key factor in the development of AD. Nrf2 plays a vital role in maintaining redox homeostasis and regulating neuroinflammatory responses in AD. Previous studies show that potassium 2-(1-hydroxypentyl)-benzoate (PHPB) exerts neuroprotective effects against cognitive impairment in a variety of dementia animal models such as APP/PS1 transgenic mice. In this study we investigated whether PHPB ameriorated the progression of AD by reducing oxidative stress (OS) damage. Both 5- and 13-month-old APP/PS1 mice were administered PHPB (100 mg·kg-1·d-1, i.g.) for 10 weeks. After the cognition assessment, the mice were euthanized, and the left hemisphere of the brain was harvested for analyses. We showed that 5-month-old APP/PS1 mice already exhibited impaired performance in the step-down test, and knockdown of Nrf2 gene only slightly increased the impairment, while knockdown of Nrf2 gene in 13-month-old APP/PS1 mice resulted in greatly worse performance. PHPB administration significantly ameliorated the cognition impairments and enhanced antioxidative capacity in APP/PS1 mice. In addition, PHPB administration significantly increased the p-AKT/AKT and p-GSK3β/GSK3β ratios and the expression levels of Nrf2, HO-1 and NQO-1 in APP/PS1 mice, but these changes were abolished by knockdown of Nrf2 gene. In SK-N-SH APPwt cells and primary mouse neurons, PHPB (10 μM) significantly increased the p-AKT/AKT and p-GSK3β/GSK3β ratios and the level of Nrf2, which were blocked by knockdown of Nrf2 gene. In summary, this study demonstrates that PHPB exerts a protective effect via the Akt/GSK3β/Nrf2 pathway and it might be a promising neuroprotective agent for the treatment of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The chemical structure of PHPB and the experimental process.
Fig. 2: Effect of PHPB on the improvement of cognitive impairment evaluated via step-down passive avoidance test.
Fig. 3: Effect of PHPB on the amelioration of oxidative injury in the brain tissue of APP/PS1 mice and APP/PS1-Nrf2 KO mice.
Fig. 4: Effect of PHPB on the improvement of antioxidant capacity in brain tissue of APP/PS1 mice and APP/PS1-Nrf2 KO mice.
Fig. 5: Effect of PHPB on Aβ deposition and glial activation in the brain tissue of 5-month-old APP/PS1 mice and APP/PS1-Nrf2 KO mice. The blue color represents mice of 5 months age.
Fig. 6: Effect of PHPB on Aβ deposition, GFAP and Iba1 in the brain tissue of 13-month-old APP/PS1 mice and APP/PS1-Nrf2 KO mice.
Fig. 7: Effect of PHPB on glial activation protein levels in the brain tissue of APP/PS1 mice and APP/PS1-Nrf2 KO mice.
Fig. 8: Effect of PHPB on the regulation of Nrf2 pathway proteins in the brain tissue of 5-month-old APP/PS1 mice and APP/PS1-Nrf2 KO mice.
Fig. 9: Effect of PHPB on the regulation of Nrf2 pathway proteins in the brain tissue of 13-month-old APP/PS1 mice and APP/PS1-Nrf2 KO mice.
Fig. 10: Effect of PHPB on the regulation of p-AKT/AKT and p-GSK3β/GSK3β protein levels in SK-N-SH APPwt cell model.
Fig. 11: Effect of PHPB on the regulation of Nrf2 and its downstream proteins in SK-N-SH APPwt cell model.

Similar content being viewed by others

References

  1. Sankar SB, Infante-Garcia C, Weinstock LD, Ramos-Rodriguez JJ, Hierro-Bujalance C, Fernandez-Ponce C, et al. Amyloid beta and diabetic pathology cooperatively stimulate cytokine expression in an Alzheimer’s mouse model. J Neuroinflammation. 2020;17:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feng W, Han X, Hu H, Chang M, Ding L, Xiang H, et al. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat Commun. 2021;12:2203.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang W, Feng C, Jiang H. Novel target for treating Alzheimer’s diseases: crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev. 2021;65:101207.

    Article  CAS  PubMed  Google Scholar 

  4. Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 2021;41:101947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanamaru T, Kamimura N, Yokota T, Iuchi K, Nishimaki K, Takami S, et al. Oxidative stress accelerates amyloid deposition and memory impairment in a double-transgenic mouse model of Alzheimer’s disease. Neurosci Lett. 2015;587:126–31.

    Article  CAS  PubMed  Google Scholar 

  6. Den H, Dong X, Chen M, Zou Z. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer’s disease or mild cognitive impairment - a meta-analysis of randomized controlled trials. Aging (Albany NY). 2020;12:4010–39.

    Article  PubMed  Google Scholar 

  7. Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ. Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics. 2017;14:35–53.

    Article  CAS  PubMed  Google Scholar 

  8. Bai R, Guo J, Ye XY, Xie Y, Xie T. Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev. 2022;77:101619.

    Article  CAS  PubMed  Google Scholar 

  9. Muche A, Arendt T, Schliebs R. Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells. PLoS One. 2017;12:e0178127.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450–64.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Z, Zhong C. Oxidative stress in Alzheimer’s disease. Neurosci Bull. 2014;30:271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sung S, Yao Y, Uryu K, Yang H, Lee VM, Trojanowski JQ, et al. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 2004;18:323–5.

    Article  CAS  PubMed  Google Scholar 

  13. Jiao SS, Yao XQ, Liu YH, Wang QH, Zeng F, Lu JJ, et al. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits. Proc Natl Acad Sci USA. 2015;112:5225–30.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fão L, Mota SI, Rego AC. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev. 2019;54:100942.

    Article  PubMed  Google Scholar 

  15. Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis. 2017;57:1105–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Osama A, Zhang J, Yao J, Yao X, Fang J. Nrf2: a dark horse in Alzheimer’s disease treatment. Ageing Res Rev. 2020;64:101206.

    Article  CAS  PubMed  Google Scholar 

  17. Kanninen K, Malm TM, Jyrkkänen HK, Goldsteins G, Keksa-Goldsteine V, Tanila H, et al. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci. 2008;39:302–13.

    Article  CAS  PubMed  Google Scholar 

  18. Ren P, Chen J, Li B, Zhang M, Yang B, Guo X, et al. Nrf2 ablation promotes Alzheimer’s disease-like pathology in APP/PS1 transgenic mice: the role of neuroinflammation and oxidative stress. Oxid Med Cell Longev. 2020;2020:3050971.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, et al. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim Biophys Acta. 2015;1852:1428–41.

    Article  CAS  PubMed  Google Scholar 

  20. Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, et al. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol. 2007;66:75–85.

    Article  CAS  PubMed  Google Scholar 

  21. Rojo AI, Pajares M, Rada P, Nuñez A, Nevado-Holgado AJ, Killik R, et al. NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biol. 2017;13:444–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng Y, Hu Y, Xu S, Rong X, Li J, Li P, et al. Potassium 2-(1-hydroxypentyl)-benzoate improves memory deficits and attenuates amyloid and τ pathologies in a mouse model of Alzheimer’s disease. J Pharmacol Exp Ther. 2014;350:361–74.

    Article  PubMed  Google Scholar 

  23. Huang L, Zhang Y, Peng Y, Zhao Z, Zhou Y, Wang X, et al. Protective effect of potassium 2-(l-hydroxypentyl)-benzoate on hippocampal neurons, synapses and dystrophic axons in APP/PS1 mice. Psychopharmacology (Berl). 2019;236:2761–71.

    Article  CAS  PubMed  Google Scholar 

  24. Li PP, Wang WP, Liu ZH, Xu SF, Lu WW, Wang L, et al. Potassium 2-(1-hydroxypentyl)-benzoate promotes long-term potentiation in Aβ1-42-injected rats and APP/PS1 transgenic mice. Acta Pharmacol Sin. 2014;35:869–78.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao W, Xu S, Peng Y, Ji X, Cao D, Li J, et al. Potassium 2-(1-hydroxypentyl)-benzoate improves learning and memory deficits in chronic cerebral hypoperfused rats. Neurosci Lett. 2013;541:155–60.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao C, Hou W, Lei H, Huang L, Wang S, Cui D, et al. Potassium 2-(l-hydroxypentyl)-benzoate attenuates neuroinflammatory responses and upregulates heme oxygenase-1 in systemic lipopolysaccharide-induced inflammation in mice. Acta Pharm Sin B. 2017;7:470–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stine WB Jr., Dahlgren KN, Krafft GA, LaDu MJ. In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem. 2003;278:11612–22.

    Article  CAS  PubMed  Google Scholar 

  28. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine biomarkers of oxidative DNA damage: a review on HPLC-ECD determination. Molecules. 2022;27:1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matés JM, Sánchez-Jiménez F. Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci. 1999;4:D339–345.

    Article  PubMed  Google Scholar 

  32. Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and antioxidant effect of ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics. 2019;16:666–74.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kanninen K, Heikkinen R, Malm T, Rolova T, Kuhmonen S, Leinonen H, et al. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA. 2009;106:16505–10.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. George M, Tharakan M, Culberson J, Reddy AP, Reddy PH. Role of Nrf2 in aging, Alzheimer’s and other neurodegenerative diseases. Ageing Res Rev. 2022;82:101756.

    Article  CAS  PubMed  Google Scholar 

  35. Joshi G, Gan KA, Johnson DA, Johnson JA. Increased Alzheimer’s disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging. 2015;36:664–79.

    Article  CAS  PubMed  Google Scholar 

  36. Branca C, Ferreira E, Nguyen TV, Doyle K, Caccamo A, Oddo S. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. Hum Mol Genet. 2017;26:4823–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zgorzynska E, Dziedzic B, Walczewska A. An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int J Mol Sci. 2021;22:9592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu LL, Wu YF, Yan F, Li CC, Dai Z, You QD, et al. 5-(3,4-Difluorophenyl)-3-(6-methylpyridin-3-yl)-1,2,4-oxadiazole (DDO-7263), a novel Nrf2 activator targeting brain tissue, protects against MPTP-induced subacute Parkinson’s disease in mice by inhibiting the NLRP3 inflammasome and protects PC12 cells against oxidative stress. Free Radic Biol Med. 2019;134:288–303.

    Article  CAS  PubMed  Google Scholar 

  39. Derfuss T, Mehling M, Papadopoulou A, Bar-Or A, Cohen JA, Kappos L. Advances in oral immunomodulating therapies in relapsing multiple sclerosis. Lancet Neurol. 2020;19:336–47.

    Article  CAS  PubMed  Google Scholar 

  40. Ghafarimoghadam M, Mashayekh R, Gholami M, Fereydani P, Shelley-Tremblay J, Kandezi N, et al. A review of behavioral methods for the evaluation of cognitive performance in animal models: Current techniques and links to human cognition. Physiol Behav. 2022;244:113652.

    Article  CAS  PubMed  Google Scholar 

  41. Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23:499–515.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med. 2015;88:314–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goyal MM, Basak A. Human catalase: looking for complete identity. Protein Cell. 2010;1:888–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830:3289–303.

    Article  PubMed  Google Scholar 

  45. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 2003;66:1499–503.

    Article  CAS  PubMed  Google Scholar 

  46. Yin F, Sancheti H, Patil I, Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med. 2016;100:108–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chaney A, Williams SR, Boutin H. In vivo molecular imaging of neuroinflammation in Alzheimer’s disease. J Neurochem. 2019;149:438–51.

    Article  CAS  PubMed  Google Scholar 

  48. Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med. 2012;2:a006346.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol. 2018;16:508–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang HY. Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res. 2003;971:197–209.

    Article  CAS  PubMed  Google Scholar 

  51. Matsuoka Y, Picciano M, Malester B, LaFrancois J, Zehr C, Daeschner JM, et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am J Pathol. 2001;158:1345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Uruno A, Matsumaru D, Ryoke R, Saito R, Kadoguchi S, Saigusa D, et al. Nrf2 suppresses oxidative stress and inflammation in app knock-in Alzheimer’s disease model mice. Mol Cell Biol. 2020;40:e00467–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oksanen M, Hyötyläinen I, Trontti K, Rolova T, Wojciechowski S, Koskuvi M, et al. NF-E2-related factor 2 activation boosts antioxidant defenses and ameliorates inflammatory and amyloid properties in human Presenilin-1 mutated Alzheimer’s disease astrocytes. Glia. 2020;68:589–99.

    Article  PubMed  Google Scholar 

  54. Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic Biol Med. 2020;159:87–102.

    Article  CAS  PubMed  Google Scholar 

  55. Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865:721–33.

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 2018;98:1169–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet. 2003;35:238–45.

    Article  CAS  PubMed  Google Scholar 

  58. Yan D, Dong J, Sulik KK, Chen SY. Induction of the Nrf2-driven antioxidant response by tert-butylhydroquinone prevents ethanol-induced apoptosis in cranial neural crest cells. Biochem Pharmacol. 2010;80:144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang YY, Yang YX, Zhe H, He ZX, Zhou SF. Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Des Devel Ther. 2014;8:2075–88.

    PubMed  PubMed Central  Google Scholar 

  60. Zhang Y, Shi Z, Zhou Y, Xiao Q, Wang H, Peng Y. Emerging substrate proteins of kelch-like ECH associated protein 1 (Keap1) and potential challenges for the development of small-molecule inhibitors of the keap1-nuclear factor erythroid 2-related factor 2 (Nrf2) protein-protein interaction. J Med Chem. 2020;63:7986–8002.

    Article  CAS  PubMed  Google Scholar 

  61. Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene. 2013;32:3765–81.

    Article  CAS  PubMed  Google Scholar 

  62. Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, León R. Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther. 2016;157:84–104.

    Article  CAS  PubMed  Google Scholar 

  63. Guo C, Zhang Y, Nie Q, Cao D, Wang X, Wan X, et al. SQSTM1/p62 oligomerization contributes to Aβ-induced inhibition of Nrf2 signaling. Neurobiol Aging. 2021;98:10–20.

    Article  CAS  PubMed  Google Scholar 

  64. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19:1598–695.

Download references

Acknowledgements

This project was supported by grants from the National Natural Science Foundation of China (No. 81673420 and 81872855), the CAMS Innovation Fund for Medical Sciences (No. 2021-I2M-1-028) and the Disciplines Construction Project (20190200802).

Author information

Authors and Affiliations

Authors

Contributions

NYS, LJH and YP designed research; NYS, LJH, JQL, YYK, JST, HYW, XNL, ZS, QYC, MYL, ZPW, XHF and LW performed research; NYS, LJH and YP contributed new analytical tools and reagents; NYS and LJH analyzed data; NYS, LJH and YP wrote the paper.

Corresponding author

Correspondence to Ying Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Ny., Huang, Lj., Lan, Jq. et al. PHPB ameliorates memory deficits and reduces oxidative injury in Alzheimer’s disease mouse model by activating Nrf2 signaling pathway. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01240-9

Keywords

Search

Quick links