Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SMAD4 endows TGF-β1-induced highly invasive tumor cells with ferroptosis vulnerability in pancreatic cancer

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy prone to recurrence and metastasis. Studies show that tumor cells with increased invasive and metastatic potential are more likely to undergo ferroptosis. SMAD4 is a critical molecule in the transforming growth factor β (TGF-β) pathway, which affects the TGF-β-induced epithelial-mesenchymal transition (EMT) status. SMAD4 loss is observed in more than half of patients with PDAC. In this study, we investigated whether SMAD4-positive PDAC cells were prone to ferroptosis because of their high invasiveness. We showed that SMAD4 status almost determined the orientation of transforming growth factor β1 (TGF-β1)-induced EMT via the SMAD4-dependent canonical pathway in PDAC, which altered ferroptosis vulnerability. We identified glutathione peroxidase 4 (GPX4), which inhibited ferroptosis, as a SMAD4 down-regulated gene by RNA sequencing. We found that SMAD4 bound to the promoter of GPX4 and decreased GPX4 transcription in PDAC. Furthermore, TGF-β1-induced high invasiveness enhanced sensitivity of SMAD4-positive organoids and pancreas xenograft models to the ferroptosis inducer RAS-selective lethal 3 (RSL3). Moreover, SMAD4 enhanced the cytotoxic effect of gemcitabine combined with RSL3 in highly invasive PDAC cells. This study provides new ideas for the treatment of PDAC, especially SMAD4-positive PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SMAD4 determines highly invasive status induced by TGF-β1 in PDAC.
Fig. 2: SMAD4 affects ferroptosis vulnerability in highly invasive pancreatic cancer.
Fig. 3: SMAD4 inhibits GPX4 expression in pancreatic cancer.
Fig. 4: SMAD4 affects ferroptosis vulnerability by targeting GPX4 in highly invasive pancreatic cancer.
Fig. 5: SMAD4-determined the sensitivity to ferroptosis in highly invasive cancer cells is further confirmed in PDOs and pancreas xenograft model.
Fig. 6: SMAD4 potentiates the cytotoxic effect of gemcitabine combined with RSL3 in highly invasive pancreatic cancer.
Fig. 7: GPX4 is associated with a poor prognosis in SMAD4-positive PDAC.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. GBD 2017 Pancreatic Cancer Collaborators. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2019;4:934–47.

    Article  Google Scholar 

  3. Huang W, Navarro-Serer B, Jeong YJ, Chianchiano P, Xia L, Luchini C, et al. Pattern of invasion in human pancreatic cancer organoids is associated with loss of SMAD4 and clinical outcome. Cancer Res. 2020;80:2804–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24:4846–61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sakamoto H, Attiyeh MA, Gerold JM, Makohon-Moore AP, Hayashi A, Hong J, et al. The evolutionary origins of recurrent pancreatic cancer. Cancer Discov. 2020;10:792–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Advancing on pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2021;18:447. https://doi.org/10.1038/s41575-021-00479-5.

  8. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Singhi AD, Wood LD. Early detection of pancreatic cancer using DNA-based molecular approaches. Nat Rev Gastroenterol Hepatol. 2021;18:457–68.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 2018;14:111–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Massagué J. TGFbeta in cancer. Cell. 2008;134:215–30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.

    Article  PubMed  PubMed Central  Google Scholar 

  13. David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, et al. TGF-β tumor suppression through a lethal EMT. Cell. 2016;164:1015–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther. 2020;5:108.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oliveira T, Hermann E, Lin D, Chowanadisai W, Hull E, Montgomery M. HDAC inhibition induces EMT and alterations in cellular iron homeostasis to augment ferroptosis sensitivity in SW13 cells. Redox Biol. 2021;47:102149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15:234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 2017;108:2187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang C, Shi S, Qin Y, Meng Q, Hua J, Hu Q, et al. Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer. Gut. 2020;69:888–900.

    Article  CAS  PubMed  Google Scholar 

  20. Yao H, Song W, Cao R, Ye C, Zhang L, Chen H, et al. An EGFR/HER2-targeted conjugate sensitizes gemcitabine-sensitive and resistant pancreatic cancer through different SMAD4-mediated mechanisms. Nat Commun. 2022;13:5506.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen YW, Hsiao PJ, Weng CC, Kuo KK, Kuo TL, Wu DC, et al. SMAD4 loss triggers the phenotypic changes of pancreatic ductal adenocarcinoma cells. BMC Cancer. 2014;14:181.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ye Z, Zhuo Q, Hu Q, Xu X, Mengqi L, Zhang Z, et al. FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 2021;38:101807.

    Article  CAS  PubMed  Google Scholar 

  23. Cui Y, Zhang Z, Zhou X, Zhao Z, Zhao R, Xu X, et al. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation. 2021;18:249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Palazuelos J, Klingener M, Aguirre A. TGFβ signaling regulates the timing of CNS myelination by modulating oligodendrocyte progenitor cell cycle exit through SMAD3/4/FoxO1/Sp1. J Neurosci. 2014;34:7917–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun Q, Fan G, Zhuo Q, Dai W, Ye Z, Ji S, et al. Pin1 promotes pancreatic cancer progression and metastasis by activation of NF-κB-IL-18 feedback loop. Cell Prolif. 2020;53:e12816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang C, Xu J, Meng Q, Zhang B, Liu J, Hua J, et al. TGFB1-induced autophagy affects the pattern of pancreatic cancer progression in distinct ways depending on SMAD4 status. Autophagy. 2020;16:486–500.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017;9:a022129.

  28. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–39.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43.

    Article  CAS  PubMed  Google Scholar 

  30. Shen Q, Liang M, Yang F, Deng YZ, Naqvi NI. Ferroptosis contributes to developmental cell death in rice blast. N Phytol. 2020;227:1831–46.

    Article  CAS  Google Scholar 

  31. Kim DH, Kim WD, Kim SK, Moon DH, Lee SJ. TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells. Cell Death Dis. 2020;11:406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Guo M, Li Y, Shen M, Kong D, Shao J, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy. 2020;16:1482–505.

    Article  CAS  PubMed  Google Scholar 

  33. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172:409–22.e421.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JW, Min DW, Kim D, Kim J, Kim MJ, Lim H, et al. GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis. Sci Rep. 2023;13:8872.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi X, Li Y, Yuan Q, Tang S, Guo S, Zhang Y, et al. Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity. Nat Commun. 2022;13:2169.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Daher B, Parks SK, Durivault J, Cormerais Y, Baidarjad H, Tambutte E, et al. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res. 2019;79:3877–90.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, et al. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 2022;29:2190–202.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim MP, Gallick GE. Gemcitabine resistance in pancreatic cancer: picking the key players. Clin Cancer Res. 2008;14:1284–5.

    Article  CAS  PubMed  Google Scholar 

  41. Balachandran VP, Beatty GL, Dougan SK. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology. 2019;156:2056–72.

    Article  CAS  PubMed  Google Scholar 

  42. Heldin CH, Vanlandewijck M, Moustakas A. Regulation of EMT by TGFβ in cancer. FEBS Lett. 2012;586:1959–70.

    Article  CAS  PubMed  Google Scholar 

  43. Oshimori N, Oristian D, Fuchs E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 2015;160:963–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Frey P, Devisme A, Rose K, Schrempp M, Freihen V, Andrieux G, et al. SMAD4 mutations do not preclude epithelial-mesenchymal transition in colorectal cancer. Oncogene. 2022;41:824–37.

    Article  CAS  PubMed  Google Scholar 

  45. Grossman JE, Muthuswamy L, Huang L, Akshinthala D, Perea S, Gonzalez RS, et al. Organoid sensitivity correlates with therapeutic response in patients with pancreatic cancer. Clin Cancer Res. 2022;28:708–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ijichi H, Otsuka M, Tateishi K, Ikenoue T, Kawakami T, Kanai F, et al. Smad4-independent regulation of p21/WAF1 by transforming growth factor-beta. Oncogene. 2004;23:1043–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 82173281, 82141129, 82173282, 82172577 and 82172948); the Shanghai Municipal Science and Technology Commission (20ZR1471100); the Clinical and Scientific Innovation Project of Shanghai Hospital Development Center (SHDC12018109); the Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057); the Shanghai Municipal Commission of Health and Family Planning (No. 2018YQ06); the Excellence Project of Shanghai Municipal Health Commission (20224Z0006); the Sailing Project of Science and Technology Commission of Shanghai Municipality (22YF1409000).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YQ, HDC, ZY and HFH; Methodology, HDC, YHH, GXF and ZL; Statistical analysis, HDC, BRL, SRJ and CJZ; Investigation, HDC, YQ, XWX and XJY; Writing, HDC and ZY; Supervision, XJY, XWX and YQ. All authors read and approved the final paper.

Corresponding authors

Correspondence to Xiao-wu Xu, Xian-jun Yu or Yi Qin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was approved by the Institutional Research Ethics Committee of Fudan University Shanghai Cancer Centre (ethical code: 050432-4-1212B) and written informed consent was obtained from all patients.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Hd., Ye, Z., Hu, Hf. et al. SMAD4 endows TGF-β1-induced highly invasive tumor cells with ferroptosis vulnerability in pancreatic cancer. Acta Pharmacol Sin 45, 844–856 (2024). https://doi.org/10.1038/s41401-023-01199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01199-z

Keywords

Search

Quick links