Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isoproterenol induces MD2 activation by β-AR-cAMP-PKA-ROS signalling axis in cardiomyocytes and macrophages drives inflammatory heart failure

Abstract

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating β-adrenergic receptors (β-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-β-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg−1·d−1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 μM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via β1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via β2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MD2 was elevated in cardiomyocytes and cardiac macrophages of ISO-induced mice.
Fig. 2: MD2 deficiency prevented ISO-induced ventricular remodelling in mice.
Fig. 3: Both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 played critical roles in ISO-induced cardiac remodelling.
Fig. 4: MD2 blockade alleviated ISO-induced cardiomyocyte inflammatory response and remodelling in vitro.
Fig. 5: Blockade of MD2 inhibited ISO-induced macrophage inflammatory response in vitro.
Fig. 6: β1-AR/cAMP/PKA/ROS signalling mediates ISO-induced MD2 activation in cardiomyocytes.
Fig. 7: β2-AR-cAMP-PKA-ROS-MD2-TLR4 pathway mediated ISO induced macrophages inflammatory injury.
Fig. 8: Schematic model of MD2 mediated ISO-induced cardiac remodelling.

Similar content being viewed by others

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart association. Circulation. 2019;139:e56–e528.

    Article  PubMed  Google Scholar 

  2. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  3. El-Armouche A, Eschenhagen T. Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev. 2009;14:225–41.

    Article  CAS  PubMed  Google Scholar 

  4. Murray DR, Prabhu SD, Chandrasekar B. Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation. 2000;101:2338–41.

    Article  CAS  PubMed  Google Scholar 

  5. Szabo-Fresnais N, Lefebvre F, Germain A, Fischmeister R, Pomérance M. A new regulation of IL-6 production in adult cardiomyocytes by beta-adrenergic and IL-1 beta receptors and induction of cellular hypertrophy by IL-6 trans-signalling. Cell Signal. 2010;22:1143–52.

    Article  CAS  PubMed  Google Scholar 

  6. Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol. 1998;31:391–8.

    Article  CAS  PubMed  Google Scholar 

  7. Toyoda S, Haruyama A, Inami S, Arikawa T, Saito F, Watanabe R, et al. Effects of carvedilol vs bisoprolol on inflammation and oxidative stress in patients with chronic heart failure. J Cardiol. 2020;75:140–7.

    Article  PubMed  Google Scholar 

  8. Woo AY, Xiao RP. β-Adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacol Sin. 2012;33:335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kossack M, Hein S, Juergensen L, Siragusa M, Benz A, Katus HA, et al. Induction of cardiac dysfunction in developing and adult zebrafish by chronic isoproterenol stimulation. J Mol Cell Cardiol. 2017;108:95–105.

    Article  CAS  PubMed  Google Scholar 

  10. Meeran MFN, Azimullah S, Adeghate E, Ojha S. Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats. Phytomedicine. 2021;84:153405.

    Article  CAS  PubMed  Google Scholar 

  11. Park SH, Kim ND, Jung JK, Lee CK, Han SB, Kim Y. Myeloid differentiation 2 as a therapeutic target of inflammatory disorders. Pharmacol Ther. 2012;133:291–8.

    Article  CAS  PubMed  Google Scholar 

  12. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45:e66.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Han J, Zou C, Mei L, Zhang Y, Qian Y, You S, et al. MD2 mediates angiotensin II-induced cardiac inflammation and remodelling via directly binding to Ang II and activating TLR4/NF-κB signaling pathway. Basic Res Cardiol. 2017;112:9.

    Article  PubMed  Google Scholar 

  14. Chen T, Huang W, Qian J, Luo W, Shan P, Cai Y, et al. Macrophage-derived myeloid differentiation protein 2 plays an essential role in ox-LDL-induced inflammation and atherosclerosis. EBioMedicine. 2020;53:102706.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Riad A, Gross S, Witte J, Feldtmann R, Wagner KB, Reinke Y, et al. MD-2 is a new predictive biomarker in dilated cardiomyopathy and exerts direct effects in isolated cardiomyocytes. Int J Cardiol. 2018;270:278–86.

    Article  PubMed  Google Scholar 

  16. Wang Y, Qian Y, Fang Q, Zhong P, Li W, Wang L, et al. Author Correction: Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun. 2018;9:16185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Luo W, Han J, Khan ZA, Fang Q, Jin Y, et al. MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy. Nat Commun. 2020;11:2148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Shan X, Chen G, Jiang L, Wang Z, Fang Q, et al. MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis. Br J Pharmacol. 2015;172:4391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li C, Zhao M, Xiao L, Wei H, Wen Z, Hu D, et al. Prognostic value of elevated levels of plasma N-Acetylneuraminic acid in patients with heart failure. Circ Heart Fail. 2021;14:e008459.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao H, Yang H, Geng C, Chen Y, Pang J, Shu T, et al. Role of IgE-FcεR1 in pathological cardiac remodelling and dysfunction. Circulation. 2021;143:1014–30.

    Article  CAS  PubMed  Google Scholar 

  21. Ye S, Luo W, Khan ZA, Wu G, Xuan L, Shan P, et al. Celastrol attenuates angiotensin II-induced cardiac remodelling by targeting STAT3. Circ Res. 2020;126:1007–23.

    Article  CAS  PubMed  Google Scholar 

  22. Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes. 2008;57:3090–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adzika GK, Machuki JO, Shang W, Hou H, Ma T, Wu L, et al. Pathological cardiac hypertrophy: the synergy of adenylyl cyclases inhibition in cardiac and immune cells during chronic catecholamine stress. J Mol Med (Berl). 2019;97:897–907.

    Article  PubMed  Google Scholar 

  24. Scanzano A, Cosentino M. Adrenergic regulation of innate immunity: a review. Front Pharmacol. 2015;6:171.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xiao H, Li H, Wang JJ, Zhang JS, Shen J, An XB, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. Eur Heart J. 2018;39:60–9.

    Article  CAS  PubMed  Google Scholar 

  26. Tanner MA, Maitz CA, Grisanti LA. Immune cell β(2)-adrenergic receptors contribute to the development of heart failure. Am J Physiol Heart Circ Physiol. 2021;321:H633–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, et al. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol. 2013;4:324.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hertz AL, Bender AT, Smith KC, Gilchrist M, Amieux PS, Aderem A, et al. Elevated cyclic AMP and PDE4 inhibition induce chemokine expression in human monocyte-derived macrophages. Proc Natl Acad Sci USA 2009;106:21978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao N, Wang JJ, Wu JM, Xu WL, Wang R, Chen XD, et al. Glibenclamide alleviates β adrenergic receptor activation-induced cardiac inflammation. Acta Pharmacol Sin. 2022;43:1243–50.

    Article  CAS  PubMed  Google Scholar 

  30. Karam S, Margaria JP, Bourcier A, Mika D, Varin A, Bedioune I, et al. Cardiac overexpression of PDE4B blunts β-adrenergic response and maladaptive remodelling in heart failure. Circulation. 2020;142:161–74.

    Article  CAS  PubMed  Google Scholar 

  31. Xu Q, Dalic A, Fang L, Kiriazis H, Ritchie RH, Sim K, et al. Myocardial oxidative stress contributes to transgenic β2-adrenoceptor activation-induced cardiomyopathy and heart failure. Br J Pharmacol. 2011;162:1012–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Remondino A, Kwon SH, Communal C, Pimentel DR, Sawyer DB, Singh K, et al. Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res. 2003;92:136–8.

    Article  CAS  PubMed  Google Scholar 

  33. Theccanat T, Philip JL, Razzaque AM, Ludmer N, Li J, Xu X, et al. Regulation of cellular oxidative stress and apoptosis by G protein-coupled receptor kinase-2; The role of NADPH oxidase 4. Cell Signal. 2016;28:190–203.

    Article  CAS  PubMed  Google Scholar 

  34. Chen H, Song Z, Ying S, Yang X, Wu W, Tan Q, et al. Myeloid differentiation protein 2 induced retinal ischemia reperfusion injury via upregulation of ROS through a TLR4-NOX4 pathway. Toxicol Lett. 2018;282:109–20.

    Article  CAS  PubMed  Google Scholar 

  35. Koenig A, Buskiewicz-Koenig IA. Redox activation of mitochondrial DAMPs and the metabolic consequences for development of autoimmunity. Antioxid Redox Signal. 2022;36:441–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20:95–112.

    Article  CAS  PubMed  Google Scholar 

  37. Sun JH, Yang HX, Yao TT, Li Y, Ruan L, Xu GR, et al. Gentianella acuta prevents acute myocardial infarction induced by isoproterenol in rats via inhibition of galectin-3/TLR4/MyD88/NF-кB inflammatory signalling. Inflammopharmacology. 2021;29:205–19.

    Article  CAS  PubMed  Google Scholar 

  38. Bai C, Ren Y, Huang J, Zhang Y, Li L, Du G. High-mobility group Box-1 regulates acute myocardial ischemia-induced injury through the toll-like receptor 4-related pathway. Int J Clin Exp Pathol. 2017;10:8344–52.

    PubMed  PubMed Central  Google Scholar 

  39. Yang H, Wang H, Andersson U. Targeting inflammation driven by HMGB1. Front Immunol. 2020;11:484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Oliveira AA, Faustino J, de Lima ME, Menezes R, Nunes KP. Unveiling the interplay between the TLR4/MD2 complex and HSP70 in the human cardiovascular system: a computational approach. Int J Mol Sci. 2019;20:3121.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Frieler RA, Mortensen RM. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodelling. Circulation. 2015;131:1019–30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Qian J, Liang S, Wang Q, Xu J, Huang W, Wu G, et al. Toll-like receptor-2 in cardiomyocytes and macrophages mediates isoproterenol-induced cardiac inflammation and remodelling. FASEB J. 2023;37:e22740.

    Article  CAS  PubMed  Google Scholar 

  43. Stapel B, Kohlhaas M, Ricke-Hoch M, Haghikia A, Erschow S, Knuuti J, et al. Low STAT3 expression sensitizes to toxic effects of β-adrenergic receptor stimulation in peripartum cardiomyopathy. Eur Heart J. 2017;38:349–61.

    CAS  PubMed  Google Scholar 

  44. Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodelling. Pharmacol Ther. 2009;123:255–78.

    Article  CAS  PubMed  Google Scholar 

  45. She G, Hou MC, Zhang Y, Zhang Y, Wang Y, Wang HF, et al. Gal-3 (Galectin-3) and K(Ca)3.1 mediate heterogeneous cell coupling and myocardial fibrogenesis driven by βAR (β-adrenoceptor) activation. Hypertension. 2020;75:393–404.

    Article  CAS  PubMed  Google Scholar 

  46. Benjamin IJ, Jalil JE, Tan LB, Cho K, Weber KT, Clark WA. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res. 1989;65:657–70.

    Article  CAS  PubMed  Google Scholar 

  47. Tanner MA, Thomas TP, Maitz CA, Grisanti LA. β2-Adrenergic receptors increase cardiac fibroblast proliferation through the Gαs/ERK1/2-dependent secretion of interleukin-6. Int J Mol Sci. 2020;21:8507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aránguiz-Urroz P, Canales J, Copaja M, Troncoso R, Vicencio JM, Carrillo C, et al. Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochim Biophys Acta. 2011;1812:23–31.

    Article  PubMed  Google Scholar 

  49. Wei M, Li Z, Xiao L, Yang Z. Effects of ROS-relative NF-κB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury. Mol Immunol. 2015;68:261–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82271347 to GJW) and Wenzhou City Research Project (ZY2020016 to GJW).

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration among all authors. GL and GJW designed experiments. JFQ, SQL, QYW, JCX performed experiments. JFQ and WL analyzed the data collection and analysis. GL, JFQ and GJW analyzed the data and wrote the manuscript. GL and WJH revised the manuscript. All the authors edited and approved the manuscript.

Corresponding authors

Correspondence to Gao-jun Wu or Guang Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Jf., Liang, Sq., Wang, Qy. et al. Isoproterenol induces MD2 activation by β-AR-cAMP-PKA-ROS signalling axis in cardiomyocytes and macrophages drives inflammatory heart failure. Acta Pharmacol Sin 45, 531–544 (2024). https://doi.org/10.1038/s41401-023-01179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01179-3

Keywords

Search

Quick links