Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ASH2L upregulation contributes to diabetic endothelial dysfunction in mice through STEAP4-mediated copper uptake

Abstract

Endothelial dysfunction is a common complication of diabetes mellitus (DM) and contributes to the high incidence and mortality of cardiovascular and cerebrovascular diseases. Aberrant epigenetic regulation under diabetic conditions, including histone modifications, DNA methylation, and non-coding RNAs (ncRNAs) play key roles in the initiation and progression of diabetic vascular complications. ASH2L, a H3K4me3 regulator, triggers genetic transcription, which is critical for physiological and pathogenic processes. In this study we investigated the role of ASH2L in mediating diabetic endothelial dysfunction. We showed that ASH2L expression was significantly elevated in vascular tissues from diabetic db/db mice and in rat aortic endothelial cells (RAECs) treated with high glucose medium (11 and 22 mM). Knockdown of ASH2L in RAECs markedly inhibited the deteriorating effects of high glucose, characterized by reduced oxidative stress and inflammatory responses. Deletion of endothelial ASH2L in db/db mice by injection of an adeno-associated virus (AAV)-endothelial specific system carrying shRNA against Ash2l (AAV-shAsh2l) restored the impaired endothelium-dependent relaxations, and ameliorated DM-induced vascular dysfunction. We revealed that ASH2L expression activated reductase STEAP4 transcription in vitro and in vivo, which consequently elevated Cu(I) transportation into ECs by the copper transporter CTR1. Excess copper produced by STEAP4-mediated copper uptake triggered oxidative stress and inflammatory responses, resulting in endothelial dysfunction. Our results demonstrate that hyperglycemia triggered ASH2L-STEAP4 axis contributes to diabetic endothelial dysfunction by modulating copper uptake into ECs and highlight the therapeutic potential of blocking the endothelial ASH2L in the pathogenesis of diabetic vascular complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diabetes induces ASH2L expression in endothelial cells (ECs).
Fig. 2: Loss of endothelial ASH2L suppresses inflammation and pyroptosis in RAECs subjected to high-glucose conditions.
Fig. 3: Overexpression ASH2L induces endothelial injury phenotype.
Fig. 4: STEAP4 is involved in ASH2L-mediated endothelial cells inflammation and pyroptosis in diabetes.
Fig. 5: Loss of endothelial STEAP4 suppresses inflammation and pyroptosis in RAECs exposed to HG levels.
Fig. 6: STEAP4-mediated copper absorption in ECs triggers inflammation and pyroptosis.
Fig. 7: Loss of endothelial ASH2L improves endothelial function in db/db mice.
Fig. 8: Loss of endothelial ASH2L suppresses STEAP4 and CTR1 expression in aortae of db/db mice.

Similar content being viewed by others

References

  1. Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17:121. https://doi.org/10.1186/s12933-018-0763-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang T, Li H, Ouyang C, Cao G, Gao J, Wu J, et al. Liver kinase B1 inhibits smooth muscle calcification via high mobility group box 1. Redox Biol. 2021;38:101828. https://doi.org/10.1016/j.redox.2020.101828.

    Article  CAS  PubMed  Google Scholar 

  3. Niu C, Chen Z, Kim KT, Sun J, Xue M, Chen G, et al. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy. 2019;15:843–70. https://doi.org/10.1080/15548627.2019.1569913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73:924–67. https://doi.org/10.1124/pharmrev.120.000096.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Liu J, Tian XY, Wong WT, Chen Y, Wang L, et al. Inhibition of bone morphogenic protein 4 restores endothelial function in db/db diabetic mice. Arterioscler Thromb Vasc Biol. 2014;34:152–9. https://doi.org/10.1161/ATVBAHA.113.302696.

    Article  CAS  PubMed  Google Scholar 

  6. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13:110. https://doi.org/10.1186/s13045-020-00946-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng X, Yang W, Huang L, Cheng H, Ge X, Zan G, et al. Causal effect of genetically determined blood copper concentrations on multiple diseases: a Mendelian randomization and phenome-wide association study. Phenomics. 2022;2:242–53. https://doi.org/10.1007/s43657-022-00052-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kang YJ. Copper and homocysteine in cardiovascular diseases. Pharmacol Ther. 2011;129:321–31. https://doi.org/10.1016/j.pharmthera.2010.11.004.

    Article  CAS  PubMed  Google Scholar 

  9. Yin R, Wang H, Li C, Wang L, Lai S, Yang X, et al. Induction of apoptosis and autosis in cardiomyocytes by the combination of homocysteine and copper via NOX-mediated p62 expression. Cell Death Discov. 2022;8:75. https://doi.org/10.1038/s41420-022-00870-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nunes KZ, Fioresi M, Marques VB, Vassallo DV. Acute copper overload induces vascular dysfunction in aortic rings due to endothelial oxidative stress and increased nitric oxide production. J Toxicol Environ Health A. 2018;81:218–28. https://doi.org/10.1080/15287394.2018.1437490.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Yan C, Yang Z, Zhang W, Niu Y, Li X, et al. Alterations of serum trace elements in patients with type 2 diabetes. J Trace Elem Med Biol. 2017;40:91–6. https://doi.org/10.1016/j.jtemb.2016.12.017.

    Article  CAS  PubMed  Google Scholar 

  12. Li P, Yin J, Zhu Y, Li S, Chen S, Sun T, et al. Association between plasma concentration of copper and gestational diabetes mellitus. Clin Nutr. 2019;38:2922–7. https://doi.org/10.1016/j.clnu.2018.12.032.

    Article  CAS  PubMed  Google Scholar 

  13. Yang F, Pei R, Zhang Z, Liao J, Yu W, Qiao N, et al. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol Vitr. 2019;54:310–6. https://doi.org/10.1016/j.tiv.2018.10.017.

    Article  CAS  Google Scholar 

  14. Jiang C, Wu B, Xue M, Lin J, Hu Z, Nie X, Cai G. Inflammation accelerates copper-mediated cytotoxicity through induction of six-transmembrane epithelial antigens of prostate 4 expression. Immunol Cell Biol. 2021;99:392–402. https://doi.org/10.1111/imcb.12427.

    Article  CAS  PubMed  Google Scholar 

  15. Scarl RT, Lawrence CM, Gordon HM, Nunemaker CS. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol. 2017;234:R123–R134. https://doi.org/10.1530/JOE-16-0594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11:900. https://doi.org/10.1038/s41467-020-14698-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsai P-H, Chien Y, Wang M-L, Hsu C-H, Laurent B, Chou S-J, et al. Ash2l interacts with Oct4-stemness circuitry to promote super-enhancer-driven pluripotency network. Nucleic Acids Res. 2019;47:10115–33. https://doi.org/10.1093/nar/gkz801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takahashi Y, Westfield GH, Oleskie AN, Trievel RC, Shilatifard A, Skiniotis G. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci USA. 2011;108:20526–31. https://doi.org/10.1073/pnas.1109360108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steward MM, Lee J-S, O’Donovan A, Wyatt M, Bernstein BE, Shilatifard A. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol. 2006;13:852–4. https://doi.org/10.1038/nsmb1131.

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y-J, Ko B-S, Liang S-M, Lu Y-J, Jan Y-J, Jiang S-S, et al. ZNF479 downregulates metallothionein-1 expression by regulating ASH2L and DNMT1 in hepatocellular carcinoma. Cell Death Dis. 2019;10:408. https://doi.org/10.1038/s41419-019-1651-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeng K, Wu Y, Wang C, Wang S, Sun H, Zou R, et al. ASH2L is involved in promotion of endometrial cancer progression via upregulation of PAX2 transcription. Cancer Sci. 2020;111:2062–77. https://doi.org/10.1111/cas.14413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han P, Gao D, Zhang W, Liu S, Yang S, Li X. Puerarin suppresses high glucose-induced MCP-1 expression via modulating histone methylation in cultured endothelial cells. Life Sci. 2015;130:103–7. https://doi.org/10.1016/j.lfs.2015.02.022.

    Article  CAS  PubMed  Google Scholar 

  23. Yang D, Xiao C, Long F, Wu W, Huang M, Qu L, et al. Fra-1 plays a critical role in angiotensin II-induced vascular senescence. FASEB J. 2019;33:7603–14. https://doi.org/10.1096/fj.201801671RRRR.

    Article  CAS  PubMed  Google Scholar 

  24. Wu W, Wang J, Xiao C, Su Z, Su H, Zhong W, et al. SMYD2-mediated TRAF2 methylation promotes the NF-κB signaling pathways in inflammatory diseases. Clin Transl Med. 2021;11:e591. https://doi.org/10.1002/ctm2.591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Gao L, Li Z, Ma X. MicroRNA-301a-3p promotes diabetic retinopathy via regulation of six-transmembrane epithelial antigen of prostate 4. Inflamm Res. 2021;70:445–57. https://doi.org/10.1007/s00011-020-01431-0.

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Huang Z, Zhou B, Wang H, Jia G, Liu G, Zhao H. STEAP4 and insulin resistance. Endocrine. 2014;47:372–9. https://doi.org/10.1007/s12020-014-0230-1.

    Article  CAS  PubMed  Google Scholar 

  27. Sharp PA. Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol. 2003;35:288–91. https://doi.org/10.1016/s1357-2725(02)00134-6.

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Xia N, Hasselwander S, Daiber A. Resveratrol and vascular function. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20092155.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee Y-T, Ayoub A, Park S-H, Sha L, Xu J, Mao F, et al. Mechanism for DPY30 and ASH2L intrinsically disordered regions to modulate the MLL/SET1 activity on chromatin. Nat Commun. 2021;12:2953. https://doi.org/10.1038/s41467-021-23268-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qi J, Huo L, Zhu YT, Zhu Y-J. Absent, small or homeotic 2-like protein (ASH2L) enhances the transcription of the estrogen receptor α gene through GATA-binding protein 3 (GATA3). J Biol Chem. 2014;289:31373–81. https://doi.org/10.1074/jbc.M114.579839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takizawa F, Mizutani S, Ogawa Y, Sawada N. Glucose-independent persistence of PAI-1 gene expression and H3K4 tri-methylation in type 1 diabetic mouse endothelium: implication in metabolic memory. Biochem Biophys Res Commun. 2013;433:66–72. https://doi.org/10.1016/j.bbrc.2013.02.064.

    Article  CAS  PubMed  Google Scholar 

  32. Oosterheert W, van Bezouwen LS, Rodenburg RNP, Granneman J, Förster F, Mattevi A, Gros P. Cryo-EM structures of human STEAP4 reveal mechanism of iron(III) reduction. Nat Commun. 2018;9:4337. https://doi.org/10.1038/s41467-018-06817-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chuang C-T, Guh J-Y, Lu C-Y, Wang Y-T, Chen H-C, Chuang L-Y. Steap4 attenuates high glucose and S100B-induced effects in mesangial cells. J Cell Mol Med. 2015;19:1234–44. https://doi.org/10.1111/jcmm.12472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kan H, Zhang K, Mao A, Geng L, Gao M, Feng L, et al. Single-cell transcriptome analysis reveals cellular heterogeneity in the ascending aortas of normal and high-fat diet-fed mice. Exp Mol Med. 2021;53:1379–89. https://doi.org/10.1038/s12276-021-00671-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61. https://doi.org/10.1126/science.abf0529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimada K, Reznik E, Stokes ME, Krishnamoorthy L, Bos PH, Song Y, et al. Copper-binding small molecule induces oxidative stress and cell-cycle arrest in glioblastoma-patient-derived cells. Cell Chem Biol. 2018;25:585–94.e7. https://doi.org/10.1016/j.chembiol.2018.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zeng C, Duan F, Hu J, Luo B, Huang B, Lou X, et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol. 2020;34:101523. https://doi.org/10.1016/j.redox.2020.101523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, et al. Wilson disease. Nat Rev Dis Prim. 2018;4:21. https://doi.org/10.1038/s41572-018-0018-3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01). We would like to thank Prof. Hui-ru Tang (Human Phenome Institute, Fudan University) for help with the ICP-MS experiments.

Author information

Authors and Affiliations

Authors

Contributions

WZ designed the study, performed initial experiments, analyzed data, and wrote the manuscript. YJD performed experiments and helped edit the manuscript. CH, YHL, and CXX performed some experiments. XHL and JC conceived, designed, and supervised all experiments, and reviewed the manuscript.

Corresponding authors

Correspondence to Xin-hua Liu or Jun Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Dong, Yj., Hong, C. et al. ASH2L upregulation contributes to diabetic endothelial dysfunction in mice through STEAP4-mediated copper uptake. Acta Pharmacol Sin 45, 558–569 (2024). https://doi.org/10.1038/s41401-023-01174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01174-8

Keywords

Search

Quick links