Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Downregulated calmodulin expression contributes to endothelial cell impairment in diabetes

Abstract

Endothelial dysfunction, a central hallmark of cardiovascular pathogenesis in diabetes mellitus, is characterized by impaired endothelial nitric oxide synthase (eNOS) and NO bioavailability. However, the underlying mechanisms remain unclear. Here in this study, we aimed to identify the role of calmodulin (CaM) in diabetic eNOS dysfunction. Human umbilical vein endothelial cells and murine endothelial progenitor cells (EPCs) treated with high glucose (HG) exhibited downregulated CaM mRNA/protein and vascular endothelial growth factor (VEGF) expression with impeded eNOS phosphorylation and cell migration/tube formation. These perturbations were reduplicated in CALM1-knockdown cells but prevented in CALM1-overexpressing cells. EPCs from type 2 diabetes animals behaved similarly to HG-treated normal EPCs, which could be rescued by CALM1-gene transduction. Consistently, diabetic animals displayed impaired eNOS phosphorylation, endothelium-dependent dilation, and CaM expression in the aorta, as well as deficient physical interaction of CaM and eNOS in the gastrocnemius. Local CALM1 gene delivery into a diabetic mouse ischemic hindlimb improved the blunted limb blood perfusion and gastrocnemius angiogenesis, and foot injuries. Diabetic patients showed insufficient foot microvascular autoregulation, eNOS phosphorylation, and NO production with downregulated CaM expression in the arterial endothelium, and abnormal CALM1 transcription in genome-wide sequencing analysis. Therefore, our findings demonstrated that downregulated CaM expression is responsible for endothelium dysfunction and angiogenesis impairment in diabetes, and provided a novel mechanism and target to protect against diabetic endothelial injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-glucose treatment induced downregulated eNOS phosphorylation and CaM expression with impaired function in HUVECs.
Fig. 2: High-glucose treatment and knocking down CaM induced downregulated eNOS phosphorylation and CaM expression with impaired function in HUVECs.
Fig. 3: High-glucose treatment and knocking down CaM induced downregulated eNOS phosphorylation and CaM expression with impaired function in normal endothelial progenitor cell (EPCs).
Fig. 4: Aortic endothelial injury with reduced CaM expression in diabetic animals.
Fig. 5: CALM1-gene transduction improved diabetic endothelial progenitor cell (EPCs) function via activating eNOS/NO/VEGF pathway.
Fig. 6: CALM1-gene transduction improved blood perfusion, ischemic limb necrosis and claudication in db/db mice with HLI.
Fig. 7: CALM1-gene transduction enhanced eNOS/NO/VEGF activity in db/db mice with HLI.
Fig. 8: Diabetes impaired vascular endothelial-associated relaxation and caused reduced CaM expression in patient artery.
Fig. 9: The carton shows the mechanism underpinning the downregulated CaM expression involved in dysfunctional and injured vascular endothelial cells and EPCs in diabetes.

Similar content being viewed by others

References

  1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan B, et al. IDF diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pr. 2021;183:109119.

    Article  Google Scholar 

  2. Skyler J, Bakris G, Bonifacio E, Darsow T, Eckel R, Groop L, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66:241–55.

    Article  CAS  PubMed  Google Scholar 

  3. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Su J, Lucchesi PA, Gonzalez-Villalobos RA, Palen DI, Rezk BM, Suzuki Y, et al. Role of advanced glycation end products with oxidative stress in resistance artery dysfunction in type 2 diabetic mice. Arterioscler Thromb Vasc Biol. 2008;28:1432–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Förstermann U, Sessa W. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37.

    Article  PubMed  Google Scholar 

  6. Abdo A, Rayner B, van Reyk D, Hawkins C. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction. Redox Biol. 2017;13:623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li F, Li Q, Shi X, Guo Y. Maslinic acid inhibits impairment of endothelial functions induced by high glucose in HAEC cells through improving insulin signaling and oxidative stress. Biomed Pharmacother. 2017;95:904–13.

    Article  CAS  PubMed  Google Scholar 

  8. Elrod J, Duranski M, Langston W, Greer J, Tao L, Dugas T, et al. eNOS gene therapy exacerbates hepatic ischemia-reperfusion injury in diabetes: a role for eNOS uncoupling. Circ Res. 2006;99:78–85.

    Article  CAS  PubMed  Google Scholar 

  9. Ying L, Li N, He Z, Zeng X, Nan Y, Chen J, et al. Fibroblast growth factor 21 ameliorates diabetes-induced endothelial dysfunction in mouse aorta via activation of the CaMKK2/AMPKα signaling pathway. Cell Death Dis. 2019;10:665.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Breton-Romero R, Feng B, Holbrook M, Farb MG, Fetterman JL, Linder EA, et al. Endothelial dysfunction in human diabetes is mediated by Wnt5a-JNK signaling. Arterioscler Thromb Vasc Biol. 2016;36:561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bharath L, Ruan T, Li Y, Ravindran A, Wan X, Nhan J, et al. Ceramide-initiated protein phosphatase 2A activation onctributes to arterial dysfunction in vivo. Diabetes. 2015;64:3914–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kobayashi T, Nemoto S, Ishida K, Taguchi K, Matsumoto T, Kamata K. Involvement of CaM kinaseII in the impairment of endothelial function and eNOS activity in aortas of type 2 diabetic rats. Clin Sci (Lond). 2012;123:375–86.

    Article  CAS  PubMed  Google Scholar 

  13. Wong M, Samal A, Lee M, Vlach J, Novikov N, Niedziela-Majka A, et al. The KN-93 molecule inhibits calcium/calmodulin-dependent protein kinase II (CaMKII) activity by binding to Ca2+/CaM. J Mol Biol. 2019;426:1440–59.

    Article  Google Scholar 

  14. Lu S, Liao Z, Lu X, Katschinski D, Mercola M, Chen J, et al. Hyperglycemia acutely increases cytosolic reactive oxygen species via -linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes. Circ Res. 2020;126: e80–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erickson J, Pereira L, Wang L, Han G, Ferguson A, Dao K, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502:372–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang M, Song P, Xu J, Zou M. Activation of NAD(P)H oxidases by thromboxane A2 receptor uncouples endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol. 2011;31:125–32.

    Article  PubMed  Google Scholar 

  17. Piazza M, Guillemette J, Dieckmann T. Dynamics of nitric oxide synthase-calmodulin interactions at physiological calcium concentrations. Biochemistry. 2015;54:1989–2000.

    Article  CAS  PubMed  Google Scholar 

  18. Piazza M, Dieckmann T, Guillemette J. Structural studies of a complex between endothelial nitric oxide synthase and calmodulin at physiological calcium concentration. Biochemistry. 2016;55:5962–71.

    Article  CAS  PubMed  Google Scholar 

  19. Jung HJ, Kim JH, Shim JS, Kwon HJ. A novel Ca2+/calmodulin antagonist HBC inhibits angiogenesis and down-regulates hypoxia-inducible factor. J Biol Chem. 2010;285:25867–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sarkar K, Fox-Talbot K, Steenbergen C, Bosch-Marcé M, Semenza GL. Adenoviral transfer of HIF-1 enhances vascular responses to critical limb ischemia in diabetic mice. Proc Natl Acad Sci USA. 2009;106:18769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen W, Peng W, Shao Y, Xu J, Dai G, Zhang Y, et al. Localization and activity of calmodulin is involved in cell-cell adhesion of tumor cells and endothelial cells in response to hypoxic stress. Cell Biol Toxicol. 2007;23:323–35.

    Article  CAS  PubMed  Google Scholar 

  22. Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim Biophys Acta. 2014;1843:398–435.

    Article  CAS  PubMed  Google Scholar 

  23. Tidow H, Nissen P. Structural diversity of calmodulin binding to its target sites. FEBS J. 2013;280:5551–65.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Ding L, Yang W, Wang J, Chen L, Chang Y, et al. Hepatic activation of the FAM3C-HSF1-CaM pathway attenuates hyperglycemia of obese diabetic mice. Diabetes. 2017;66:1185–97.

    Article  CAS  PubMed  Google Scholar 

  25. Pan R, Lou J, Wei L. Significant effects of Ganoderma lucidum polysaccharide on lipid metabolism in diabetes may be associated with the activation of the FAM3C‑HSF1‑CAM signaling pathway. Exp Ther Med. 2021;22:820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cui W, Zheng Y, Zhang Q, Wang J, Wang L, Yang W, et al. Low-molecular-weight fucoidan protects endothelial function and ameliorates basal hypertension in diabetic Goto-Kakizaki rats. Lab Invest. 2014;94:382–93.

    Article  CAS  PubMed  Google Scholar 

  27. Wang K, Dai X, He J, Yan X, Yang C, Fan X, et al. Endothelial overexpression of metallothionein prevents diabetes-induced impairment in ischemia angiogenesis through preservation of HIF-1α/SDF-1/VEGF signaling in endothelial progenitor cells. Diabetes. 2020;69:1779–92.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wils J, Favre J, Bellien J. Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther. 2017;170:98–115.

    Article  CAS  PubMed  Google Scholar 

  29. Dai X, Yan X, Zeng J, Chen J, Wang Y, Chen J, et al. Elevating CXCR7 improves angiogenic function of EPCs via Akt/GSK-3beta/Fyn-mediated Nrf2 activation in diabetic limb ischemia. Circ Res. 2017;120:e7–e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meng S, Lv J, Chanda PK, Owusu I, Chen K, Cooke JP. Reservoir of fibroblasts promotes recovery from limb ischemia. Circulation. 2020;142:1647–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bir S, Pattillo C, Pardue S, Kolluru G, Shen X, Giordano T, et al. Nitrite anion therapy protects against chronic ischemic tissue injury in db/db diabetic mice in a NO/VEGF-dependent manner. Diabetes. 2014;63:270–81.

    Article  CAS  PubMed  Google Scholar 

  32. Shah M, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 2016;118:1808–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang W, Ha C, Jhun B, Wong C, Jain M, Jin Z. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood. 2010;115:2971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sriram K, Laughlin J, Rangamani P, Tartakovsky D. Shear-induced nitric oxide production by endothelial cells. Biophys J. 2016;111:208–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crotti L, Johnson C, Graf E, De Ferrari G, Cuneo B, Ovadia M, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013;127:1009–17.

    Article  CAS  PubMed  Google Scholar 

  36. Jensen H, Brohus M, Nyegaard M, Overgaard M. Human calmodulin mutations. Front Mol Neurosci. 2018;11:396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hegyi B, Bers D, Bossuyt J. CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol. 2019;127:246–59.

    Article  CAS  PubMed  Google Scholar 

  38. Kolluru G, Bir S, Kevil C. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267.

  39. Persechini A, Stemmer P. Calmodulin is a limiting factor in the cell. Trends Cardiovasc Med. 2002;12:32–7.

    Article  CAS  PubMed  Google Scholar 

  40. Tran Q, Black D, Persechini A. Intracellular coupling via limiting calmodulin. J Biol Chem. 2003;278:24247–50.

    Article  CAS  PubMed  Google Scholar 

  41. Oztürk Y, Aydin S, Altan VM, Yildizoğlu-ari N, Ozçelikay AT. Effect of short and long term streptozotocin diabetes on smooth muscle calmodulin levels in the rat. Cell Calcium. 1994;16:81–6.

    Article  PubMed  Google Scholar 

  42. Paul S, Ali A, Katare R. Molecular complexities underlying the vascular complications of diabetes mellitus-A comprehensive review. J Diabetes Complicat. 2020;34:107613.

    Article  Google Scholar 

  43. Fadini G. A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications. Diabetologia. 2014;57:4–15.

    Article  CAS  PubMed  Google Scholar 

  44. Gambardella J, Khondkar W, Morelli M, Wang X, Santulli G, Trimarco V. Arginine and endothelial function. Biomedicines. 2020;8:277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai H, Liu D, Garcia JG. CaM Kinase II-dependent pathophysiological signalling in endothelial cells. Cardiovasc Res. 2008;77:30–4.

    Article  CAS  PubMed  Google Scholar 

  46. Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci. 2022;23:666–82.

    Article  CAS  PubMed  Google Scholar 

  47. Bhattacharyya M, Stratton MM, Going CC, McSpadden ED, Huang Y, Susa AC, et al. Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II. Elife. 2016;5:e13405.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020;100:407–61.

    Article  CAS  PubMed  Google Scholar 

  49. Botusan I, Sunkari V, Savu O, Catrina A, Grünler J, Lindberg S, et al. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci USA. 2008;105:19426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ceradini D, Yao D, Grogan R, Callaghan M, Edelstein D, Brownlee M, et al. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem. 2008;283:10930–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gunton JE. Hypoxia-inducible factors and diabetes. J Clin Invest. 2020;130:5063–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jin-huan Gao from Xuanwu Hospital, Capital Medical University for technical support in the establishment of hind limb ischemia model. This study was supported by the National Natural Science Foundation of China (81570206 and 81970197), and the Scientific Research Key Program of Beijing Municipal Commission of Education (KZ201710025023).

Author information

Authors and Affiliations

Authors

Contributions

TTL, HHX, and ZJL performed the research and wrote the manuscript. HPZ, ZXZ and HTZ prepared patient samples and collected information. ZQW, JYX, QL, YM and HJY provided research material and techniques and contributed to data interpretation. DLL directed the project, wrote, reviewed, and edited the manuscript. DLL is the guarantor of this project and, as such, has full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Da-li Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Tt., Xu, Hh., Liu, Zj. et al. Downregulated calmodulin expression contributes to endothelial cell impairment in diabetes. Acta Pharmacol Sin 44, 2492–2503 (2023). https://doi.org/10.1038/s41401-023-01127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01127-1

Keywords

This article is cited by

Search

Quick links