Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Par3L, a polarity protein, promotes M1 macrophage polarization and aggravates atherosclerosis in mice via p65 and ERK activation

Abstract

Proinflammatory M1 macrophages are critical for the progression of atherosclerosis. The Par3-like protein (Par3L) is a homolog of the Par3 family involved in cell polarity establishment. Par3L has been shown to maintain the stemness of mammary stem cells and promote the survival of colorectal cancer cells. In this study, we investigated the roles of the polar protein Par3L in M1 macrophage polarization and atherosclerosis. To induce atherosclerosis, Apoe−/− mice were fed with an atherosclerotic Western diet for 8 or 16 weeks. We showed that Par3L expression was significantly increased in human and mouse atherosclerotic plaques. In primary mouse macrophages, oxidized low-density lipoprotein (oxLDL, 50 μg/mL) time-dependently increased Par3L expression. In Apoe−/− mice, adenovirus-mediated Par3L overexpression aggravated atherosclerotic plaque formation accompanied by increased M1 macrophages in atherosclerotic plaques and bone marrow. In mouse bone marrow-derived macrophages (BMDMs) or peritoneal macrophages (PMs), we revealed that Par3L overexpression promoted LPS and IFNγ-induced M1 macrophage polarization by activating p65 and extracellular signal-regulated kinase (ERK) rather than p38 and JNK signaling. Our results uncover a previously unidentified role for the polarity protein Par3L in aggravating atherosclerosis and favoring M1 macrophage polarization, suggesting that Par3L may serve as a potential therapeutic target for atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression of Par3L is increased in human and mouse atherosclerotic plaques.
Fig. 2: Atherosclerotic risk factor oxidized low-density lipoprotein (oxLDL) upregulates Par3L in primary mouse macrophages.
Fig. 3: Adenovirus-mediated Par3L overexpression aggravates atherosclerosis in Apoe−/− mice.
Fig. 4: Adenovirus-mediated Par3L overexpression regulates M1 macrophage polarization in Apoe−/− mice in vivo.
Fig. 5: Par3L promotes LPS and IFNγ-induced M1 macrophage polarization in vitro.
Fig. 6: Par3L increases the phosphorylation of p65 and ERK1/2 rather than p38 and JNK.
Fig. 7: Inhibiting NF-κB or ERK signaling reverses Par3L-mediated M1 macrophage polarization.
Fig. 8: Model for the role of Par3L in macrophage M1 polarization and atherosclerosis.

Similar content being viewed by others

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145:e153–e639.

    Article  PubMed  Google Scholar 

  2. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  PubMed  Google Scholar 

  3. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–12.

    Article  CAS  PubMed  Google Scholar 

  4. Barrett TJ. Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2020;40:20–33.

    Article  CAS  PubMed  Google Scholar 

  5. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014;262:153–66.

    Article  CAS  PubMed  Google Scholar 

  7. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118:653–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, et al. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: focus on NF-kappaB, JAK/STAT, and MAPK signaling pathways. Phytother Res. 2022;36:1216–30.

    Article  CAS  PubMed  Google Scholar 

  10. Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev. 2017;33:55–63.

    Article  CAS  PubMed  Google Scholar 

  11. Yu G, Yu H, Yang Q, Wang J, Fan H, Liu G, et al. Vibrio harveyi infections induce production of proinflammatory cytokines in murine peritoneal macrophages via activation of p38 MAPK and NF-kappaB pathways, but reversed by PI3K/AKT pathways. Dev Comp Immunol. 2022;127:104292.

    Article  CAS  PubMed  Google Scholar 

  12. Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106:345–58.

    Article  CAS  PubMed  Google Scholar 

  13. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA. 2004;101:4560–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ridker PM, Luscher TF. Anti-inflammatory therapies for cardiovascular disease. Eur Heart J. 2014;35:1782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Ingen E, Foks AC, Woudenberg T, van der Bent ML, de Jong A, Hohensinner PJ, et al. Inhibition of microRNA-494-3p activates Wnt signaling and reduces proinflammatory macrophage polarization in atherosclerosis. Mol Ther Nucleic Acids. 2021;26:1228–39.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang S, Yang S, Chen Y, Chen Y, Li R, Han S, et al. Ginsenoside Rb2 alleviated atherosclerosis by inhibiting M1 macrophages polarization induced by microRNA-216a. Front Pharmacol. 2021;12:764130.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Li J, Luo S, Wang M, Huang Q, Deng Z, et al. IgE Contributes to atherosclerosis and obesity by affecting macrophage polarization, macrophage protein network, and foam cell formation. Arterioscler Thromb Vasc Biol. 2020;40:597–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li T, Ding L, Wang Y, Yang O, Wang S, Kong J. Genetic deficiency of Phactr1 promotes atherosclerosis development via facilitating M1 macrophage polarization and foam cell formation. Clin Sci. 2020;134:2353–68.

    Article  CAS  Google Scholar 

  19. Gao L, Macara IG, Joberty G. Multiple splice variants of Par3 and of a novel related gene, Par3L, produce proteins with different binding properties. Gene. 2002;294:99–107.

    Article  CAS  PubMed  Google Scholar 

  20. Kohjima M, Noda Y, Takeya R, Saito N, Takeuchi K, Sumimoto H. PAR3beta, a novel homologue of the cell polarity protein PAR3, localizes to tight junctions. Biochem Biophys Res Commun. 2002;299:641–6.

    Article  CAS  PubMed  Google Scholar 

  21. Izaki T, Kamakura S, Kohjima M, Sumimoto H. Phosphorylation-dependent binding of 14-3-3 to Par3beta, a human Par3-related cell polarity protein. Biochem Biophys Res Commun. 2005;329:211–8.

    Article  CAS  PubMed  Google Scholar 

  22. Thompson BJ. Par-3 family proteins in cell polarity & adhesion. FEBS J. 2022;289:596–613.

    Article  CAS  PubMed  Google Scholar 

  23. Huo Y, Macara IG. The Par3-like polarity protein Par3L is essential for mammary stem cell maintenance. Nat Cell Biol. 2014;16:529–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li T, Liu D, Lei X, Jiang Q. Par3L enhances colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway. Biochem Biophys Res Commun. 2017;482:1037–41.

    Article  CAS  PubMed  Google Scholar 

  25. Dai X, Ding Y, Liu Z, Zhang W, Zou MH. Phosphorylation of CHOP (C/EBP Homologous Protein) by the AMP-Activated protein kinase alpha 1 in macrophages promotes CHOP degradation and reduces injury-induced neointimal disruption in vivo. Circ Res. 2016;119:1089–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Vis Exp. 2010;28:1488.

    Google Scholar 

  27. Geng T, Yan Y, Xu L, Cao M, Xu Y, Pu J, et al. CD137 signaling induces macrophage M2 polarization in atherosclerosis through STAT6/PPARdelta pathway. Cell Signal. 2020;72:109628.

    Article  CAS  PubMed  Google Scholar 

  28. Huang Y, Ma K, Qin R, Fang Y, Zhou J, Dai X. Pristane attenuates atherosclerosis in Apoe(-/-) mice via IL-4-secreting regulatory plasma cell-mediated M2 macrophage polarization. Biomed Pharmacother. 2022;155:113750.

    Article  CAS  PubMed  Google Scholar 

  29. Ma C, Xia R, Yang S, Liu L, Zhang J, Feng K, et al. Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE(-/-) mice. Theranostics. 2020;10:1090–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wen B, Dang YY, Wu SH, Huang YM, Ma KY, Xu YM, et al. Antiatherosclerotic effect of dehydrocorydaline on ApoE(-/-) mice: inhibition of macrophage inflammation. Acta Pharmacol Sin. 2022;43:1408–18.

    Article  CAS  PubMed  Google Scholar 

  31. Williams H, Johnson JL, Carson KG, Jackson CL. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2002;22:788–92.

    Article  CAS  PubMed  Google Scholar 

  32. Tie L, Xiao H, Wu DL, Yang Y, Wang P. A brief guide to good practices in pharmacological experiments: Western blotting. Acta Pharmacol Sin. 2021;42:1015–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kopin L, Lowenstein C. Dyslipidemia. Ann Intern Med. 2017;167:ITC81–ITC96.

    Article  PubMed  Google Scholar 

  34. Gomez-Delgado F, Katsiki N, Lopez-Miranda J, Perez-Martinez P. Dietary habits, lipoprotein metabolism and cardiovascular disease: from individual foods to dietary patterns. Crit Rev Food Sci Nutr. 2021;61:1651–69.

    Article  PubMed  Google Scholar 

  35. Casula M, Colpani O, Xie S, Catapano AL, Baragetti A. HDL in atherosclerotic cardiovascular disease: in search of a role. Cells. 2021;10:1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seebacher F, Zeigerer A, Kory N, Krahmer N. Hepatic lipid droplet homeostasis and fatty liver disease. Semin Cell Dev Biol. 2020;108:72–81.

    Article  CAS  PubMed  Google Scholar 

  37. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol. 2017;8:1–8.

    PubMed  PubMed Central  Google Scholar 

  38. Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr Rev. 2019;40:1367–93.

    Article  PubMed  Google Scholar 

  39. Baker RG, Hayden MS, Ghosh S. NF-kappaB, inflammation, and metabolic disease. Cell Metab. 2011;13:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoshizumi M, Kyotani Y, Zhao J, Nagayama K, Ito S, Tsuji Y, et al. Role of big mitogen-activated protein kinase 1 (BMK1)/extracellular signal-regulated kinase 5 (ERK5) in the pathogenesis and progression of atherosclerosis. J Pharm Sci. 2012;120:259–63.

    Article  CAS  Google Scholar 

  41. Tubita A, Lombardi Z, Tusa I, Dello Sbarba P, Rovida E. Beyond kinase activity: ERK5 nucleo-cytoplasmic shuttling as a novel target for anticancer therapy. Int J Mol Sci. 2020;21:938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim HS, Asmis R. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype. Free Radic Biol Med. 2017;109:75–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muslin AJ. MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci. 2008;115:203–18.

    Article  CAS  Google Scholar 

  44. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25:280–8.

    Article  CAS  PubMed  Google Scholar 

  45. Singh M, Kumar S, Singh B, Jain P, Kumari A, Pahuja I, et al. The 1, 2-ethylenediamine SQ109 protects against tuberculosis by promoting M1 macrophage polarization through the p38 MAPK pathway. Commun Biol. 2022;5:759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen XS, Wang SH, Liu CY, Gao YL, Meng XL, Wei W, et al. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-kappaB and MAPK signaling. Pharmacol Res. 2022;185:106473.

    Article  CAS  PubMed  Google Scholar 

  47. Ge G, Bai J, Wang Q, Liang X, Tao H, Chen H, et al. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-kappaB signaling pathway. Sci China Life Sci. 2022;65:588–603.

    Article  CAS  PubMed  Google Scholar 

  48. Fang J, Ou Q, Wu B, Li S, Wu M, Qiu J, et al. TcpC inhibits M1 but promotes M2 macrophage polarization via regulation of the MAPK/NF-kappaB and Akt/STAT6 pathways in urinary tract infection. Cells. 2022;11:2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Allam AH, Charnley M, Russell SM. Context-specific mechanisms of cell polarity regulation. J Mol Biol. 2018;430:3457–71.

    Article  CAS  PubMed  Google Scholar 

  50. Ellenbroek SI, Iden S, Collard JG. Cell polarity proteins and cancer. Semin Cancer Biol. 2012;22:208–15.

    Article  CAS  PubMed  Google Scholar 

  51. Shaha S, Patel K, Riddell M. Cell polarity signaling in the regulation of syncytiotrophoblast homeostasis and inflammatory response. Placenta. 2022:S0143-4004(22)00457-X.

  52. Schurmann C, Dienst FL, Palfi K, Vasconez AE, Oo JA, Wang S, et al. The polarity protein Scrib limits atherosclerosis development in mice. Cardiovasc Res. 2019;115:1963–74.

    Article  PubMed  Google Scholar 

  53. Yang JD, Chen JT, Liu SH, Chen RM. Contribution of the testosterone androgen receptor-PARD3B signaling axis to tumorigenesis and malignance of glioblastoma multiforme through stimulating cell proliferation and colony formation. J Clin Med. 2022;11:4818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koehler S, Tellkamp F, Niessen CM, Bloch W, Kerjaschki D, Schermer B, et al. Par3A is dispensable for the function of the glomerular filtration barrier of the kidney. Am J Physiol Ren Physiol. 2016;311:F112–119.

    Article  CAS  Google Scholar 

  55. Koehler S, Odenthal J, Ludwig V, Unnersjo Jess D, Hohne M, Jungst C, et al. Scaffold polarity proteins Par3A and Par3B share redundant functions while Par3B acts independent of atypical protein kinase C/Par6 in podocytes to maintain the kidney filtration barrier. Kidney Int. 2022;101:733–51.

    Article  CAS  PubMed  Google Scholar 

  56. Gyftopoulos A, Chen YJ, Wang L, Williams CH, Chun YW, O’Connell JR, et al. Identification of novel genetic variants and comorbidities associated with ICD-10-based diagnosis of hypertrophic cardiomyopathy using the UK Biobank Cohort. Front Genet. 2022;13:866042.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Blagov AV, Markin AM, Bogatyreva AI, Tolstik TV, Sukhorukov VN, Orekhov AN. The role of macrophages in the pathogenesis of atherosclerosis. Cells. 2023;12:522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang X, Du H, Li X. Artesunate attenuates atherosclerosis by inhibiting macrophage M1-like polarization and improving metabolism. Int Immunopharmacol. 2022;102:108413.

    Article  CAS  PubMed  Google Scholar 

  59. Bosmans LA, van Tiel CM, Aarts S, Willemsen L, Baardman J, van Os BW, et al. Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages’ transition into a pro-inflammatory state. Cardiovasc Res. 2023;119:1146–60.

    Article  CAS  PubMed  Google Scholar 

  60. Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res. 2021;83:101109.

    Article  CAS  PubMed  Google Scholar 

  61. Attie AD. Recruiting a transcription factor in the liver to prevent atherosclerosis. J Clin Invest. 2021;131:e154677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Danielewski M, Matuszewska A, Szelag A, Sozanski T. The impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis. Int J Mol Sci. 2021;22:6074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (81974046 and 82170467), the Natural Science Foundation of Guangdong (2022A1515012502), and the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital (202201-301), and Discipline Development Project of Guangzhou Medical University, China (02-445-2301221XM).

Author information

Authors and Affiliations

Authors

Contributions

XYD directed the project, designed the experiments, and revised the manuscript. YMH performed experiments, analyzed and interpreted the data, and drafted the manuscript. KYM and YSW performed experiments and analyzed data. YYD and YMX supervised the experiments. All authors read the final manuscript.

Corresponding author

Correspondence to Xiao-yan Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Ym., Wu, Ys., Dang, Yy. et al. Par3L, a polarity protein, promotes M1 macrophage polarization and aggravates atherosclerosis in mice via p65 and ERK activation. Acta Pharmacol Sin 45, 112–124 (2024). https://doi.org/10.1038/s41401-023-01161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01161-z

Keywords

Search

Quick links