Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rosmarinic acid in combination with ginsenoside Rg1 suppresses colon cancer metastasis via co-inhition of COX-2 and PD1/PD-L1 signaling axis

Abstract

Metastasis of colorectal cancer (CRC) is a leading cause of mortality among CRC patients. Elevated COX-2 and PD-L1 expression in colon cancer tissue has been linked to distant metastasis of tumor cells. Although COX-2 inhibitors and immune checkpoint inhibitors demonstrate improved anti-tumor efficacy, their toxicity and variable therapeutic effects in individual patients raise concerns. To address this challenge, it is vital to identify traditional Chinese medicine components that modulate COX-2 and PD-1/PD-L1: rosmarinic acid (RA) exerts striking inhibitory effect on COX-2, while ginsenoside Rg1 (GR) possesses the potential to suppress the binding of PD-1/PD-L1. In this study we investigated whether the combination of RA and GR could exert anti-metastatic effects against CRC. MC38 tumor xenograft mouse model with lung metastasis was established. The mice were administered RA (100 mg·kg−1·d−1, i.g.) alone or in combination with GR (100 mg·kg−1·d−1, i.p.). We showed that RA (50, 100, 150 μM) or a COX-2 inhibitor Celecoxib (1, 3, 9 μM) concentration-dependently inhibited the migration and invasion of MC38 cells in vitro. We further demonstrated that RA and Celecoxib inhibited the metastasis of MC38 tumors in vitro and in vivo via interfering with the COX-2-MYO10 signaling axis and inhibiting the generation of filopodia. In the MC38 tumor xenograft mice, RA administration significantly decreased the number of metastatic foci in the lungs detected by Micro CT scanning; RA in combination with GR that had inhibitory effect on the binding of PD-1 and PD-L1 further suppressed the lung metastasis of colon cancer. Compared to COX-2 inhibitors and immune checkpoint inhibitors, RA and GR displayed better safety profiles without disrupting the tissue structures of the liver, stomach and colon, offering insights into the lower toxic effects of clinical traditional Chinese medicine against tumors while retaining its efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RA inhibits colon cancer metastasis in vitro and in vivo.
Fig. 2: RA inhibits colon cancer metastasis via COX-2 – MYO10 axis.
Fig. 3: COX-2 and MYO10 are highly expressed in human colon cancer.
Fig. 4: Knockout of COX-2 reduces MYO10 expression and inhibits MC38 cell migration and invasion.
Fig. 5: RA can inhibit the migration and invasion abilities of Ptgs2OE MC38 cells.
Fig. 6: RA combined with GR can further inhibit colon cancer metastasis in vivo.
Fig. 7: GR could activate CD8 T cells.
Fig. 8: Mechanism diagram.

Similar content being viewed by others

References

  1. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14.

    Article  PubMed  Google Scholar 

  2. Uddin MJ, Crews BC, Blobaum AL, Kingsley PJ, Gorden DL, McIntyre JO, et al. Selective visualization of cyclooxygenase-2 in inflammation and cancer by targeted fluorescent imaging agents. Cancer Res. 2010;70:3618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu L, Stevens J, Hilton MB, Seaman S, Conrads TP, Veenstra TD, et al. COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci Transl Med. 2014;6:242ra84.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hidalgo-Estévez AM, Stamatakis K, Jiménez-Martínez M, López-Pérez R, Fresno M. Cyclooxygenase 2-regulated genes an alternative avenue to the development of new therapeutic drugs for colorectal cancer. Front Pharmacol. 2020;11:533.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sorski L, Melamed R, Matzner P, Lavon H, Shaashua L, Rosenne E, et al. Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through β-adrenoceptors blockade and COX2 inhibition. Brain Behav Immun. 2016;58:91–8.

    Article  CAS  PubMed  Google Scholar 

  6. Dong XF, Liu TQ, Zhi XT, Zou J, Zhong JT, Li T, et al. COX-2/PGE2 axis regulates HIF2α activity to promote hepatocellular carcinoma hypoxic response and reduce the sensitivity of sorafenib treatment. Clin Cancer Res. 2018;24:3204–16.

    Article  CAS  PubMed  Google Scholar 

  7. Garrido MP, Hurtado I, Valenzuela-Valderrama M, Salvatierra R, Hernández A, Vega M, et al. NGF-enhanced vasculogenic properties of epithelial ovarian cancer cells is reduced by inhibition of the COX-2/PGE2 signaling axis. Cancers. 2019;11:1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Araújo WM, Tanaka MN, Lima PHS, de Moraes CF, Leve F, Bastos LG, et al. TGF-β acts as a dual regulator of COX-2/PGE2 tumor promotion depending of its cross-interaction with H-Ras and Wnt/β-catenin pathways in colorectal cancer cells. Cell Biol Int. 2021;45:662–73.

    Article  PubMed  Google Scholar 

  9. Zheng Y, Comaills V, Burr R, Boulay G, Miyamoto DT, Wittner BS, et al. COX-2 mediates tumor-stromal prolactin signaling to initiate tumorigenesis. Proc Natl Acad Sci USA. 2019;116:5223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Svitkina T. The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol. 2018;10:a018267.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Izdebska M, Zielińska W, Hałas-Wiśniewska M, Grzanka A. Involvement of actin and actin-binding proteins in carcinogenesis. Cells. 2020;9:2245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abraham S, Scarcia M, Bagshaw RD, McMahon K, Grant G, Harvey T, et al. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis. Nat Commun. 2015;6:7286.

    Article  PubMed  Google Scholar 

  13. Zhang H, Berg JS, Li Z, Wang Y, Lång P, Sousa AD, et al. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol. 2004;6:523–31.

    Article  PubMed  Google Scholar 

  14. Peuhu E, Jacquemet G, Scheele C, Isomursu A, Laisne MC, Koskinen LM, et al. MYO10-filopodia support basement membranes at pre-invasive tumor boundaries. Dev Cell. 2022;57:2350–64.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu XJ, Wang CZ, Dai PG, Xie Y, Song NN, Liu Y, et al. Myosin X regulates netrin receptors and functions in axonal path-finding. Nat Cell Biol. 2007;9:184–92.

    Article  CAS  PubMed  Google Scholar 

  16. Dormond O, Foletti A, Paroz C, Rüegg C. NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med. 2001;7:1041–7.

    Article  CAS  PubMed  Google Scholar 

  17. Han Y, Liao Z, Li Y, Zhao X, Ma S, Bao D, et al. Magnetically controlled capsule endoscopy for assessment of antiplatelet therapy-induced gastrointestinal injury. J Am Coll Cardiol. 2022;79:116–28.

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen TNM, Sha S, Chen LJ, Holleczek B, Brenner H, Schöttker B. Strongly increased risk of gastric and duodenal ulcers among new users of low-dose aspirin: results from two large cohorts with new-user design. Aliment Pharmacol Ther. 2022;56:251–62.

    Article  CAS  PubMed  Google Scholar 

  19. Kang DO, An H, Park GU, Yum Y, Park EJ, Park Y, et al. Cardiovascular and bleeding risks associated with nonsteroidal anti-inflammatory drugs after myocardial infarction. J Am Coll Cardiol. 2020;76:518–29.

    Article  CAS  PubMed  Google Scholar 

  20. Szeto CC, Sugano K, Wang JG, Fujimoto K, Whittle S, Modi GK, et al. Non-steroidal anti-inflammatory drug (NSAID) therapy in patients with hypertension, cardiovascular, renal or gastrointestinal comorbidities: joint APAGE/APLAR/APSDE/APSH/APSN/PoA recommendations. Gut. 2020;69:617–29.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang DY, Peng RQ, Wang X, Zuo HL, Lyu LY, Yang FQ, et al. A network pharmacology-based study on the quality control markers of antithrombotic herbs: using salvia miltiorrhiza - ligusticum chuanxiong as an example. J Ethnopharmacol. 2022;292:115197.

    Article  CAS  PubMed  Google Scholar 

  22. Peng Y, Yang T, Huang K, Shen L, Tao Y, Liu C. Salvia miltiorrhiza ameliorates liver fibrosis by activating hepatic natural killer cells in vivo and in vitro. Front Pharmacol. 2018;9:762.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tao L, Wang S, Zhao Y, Sheng X, Wang A, Zheng S, et al. Phenolcarboxylic acids from medicinal herbs exert anticancer effects through disruption of COX-2 activity. Phytomedicine. 2014;21:1473–82.

    Article  CAS  PubMed  Google Scholar 

  24. Cen B, Wei J, Wang D, Xiong Y, Shay JW, DuBois RN. Mutant APC promotes tumor immune evasion via PD-L1 in colorectal cancer. Oncogene. 2021;40:5984–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyazaki T, Chung S, Sakai H, Ohata H, Obata Y, Shiokawa D, et al. Stemness and immune evasion conferred by the TDO2-AHR pathway are associated with liver metastasis of colon cancer. Cancer Sci. 2022;113:170–81.

    Article  CAS  PubMed  Google Scholar 

  27. Ruck T, Barman S, Schulte-Mecklenbeck A, Pfeuffer S, Steffen F, Nelke C, et al. Alemtuzumab-induced immune phenotype and repertoire changes: implications for secondary autoimmunity. Brain. 2022;145:1711–25.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sacco AG, Chen R, Worden FP, Wong DJL, Adkins D, Swiecicki P, et al. Pembrolizumab plus cetuximab in patients with recurrent or metastatic head and neck squamous cell carcinoma: an open-label, multi-arm, non-randomised, multicentre, phase 2 trial. Lancet Oncol. 2021;22:883–92.

    Article  CAS  PubMed  Google Scholar 

  29. Ren Z, Xu J, Bai Y, Xu A, Cang S, Du C, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol. 2021;22:977–90.

    Article  CAS  PubMed  Google Scholar 

  30. Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386:1143–54.

    Article  PubMed  Google Scholar 

  31. Long J, Liu XK, Kang ZP, Wang MX, Zhao HM, Huang JQ, et al. Ginsenoside Rg1 ameliorated experimental colitis by regulating the balance of M1/M2 macrophage polarization and the homeostasis of intestinal flora. Eur J Pharmacol. 2022;917:174742.

    Article  CAS  PubMed  Google Scholar 

  32. Ren Z, Chen X, Hong L, Zhao X, Cui G, Li A, et al. Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis. Small. 2020;16:e1905233.

    Article  PubMed  Google Scholar 

  33. Xia J, Ma S, Zhu X, Chen C, Zhang R, Cao Z, et al. Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches. Sci Adv. 2022;8:eabj1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Q, Wu T, Qi Z, Zhao L, Pei J, Tang F. Characterization of a novel thermostable and xylose-tolerant GH 39 β-xylosidase from Dictyoglomus thermophilum. BMC Biotechnol. 2018;18:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Radad K, Gille G, Moldzio R, Saito H, Rausch WD. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res. 2004;1021:41–53.

    Article  CAS  PubMed  Google Scholar 

  36. Wu JJ, Yang Y, Wan Y, Xia J, Xu JF, Zhang L, et al. New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer’s disease. Biomed Pharmacother. 2022;152:113207.

    Article  CAS  PubMed  Google Scholar 

  37. Li C, Gou X, Gao H. Doxorubicin nanomedicine based on ginsenoside Rg1 with alleviated cardiotoxicity and enhanced antitumor activity. Nanomedicine. 2021;16:2587–604.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu Y, Chen J, Li J, Zhou C, Huang X, Chen B. Ginsenoside Rg1 as a promising adjuvant agent for enhancing the anti-cancer functions of granulocytes inhibited by noradrenaline. Front Immunol. 2023;14:1070679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong J, Gwon D, Jang CY. Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression. J Ginseng Res. 2022;46:481–8.

    Article  PubMed  Google Scholar 

  40. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16:361–75.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peng W, Tan S, Xu Y, Wang L, Qiu D, Cheng C, et al. LC‑MS/MS metabolome analysis detects the changes in the lipid metabolic profiles of dMMR and pMMR cells. Oncol Rep. 2018;40:1026–34.

    CAS  PubMed  Google Scholar 

  42. Augustine T, John P, Friedman T, Jiffry J, Guzik H, Mannan R, et al. Potentiating effect of reovirus on immune checkpoint inhibition in microsatellite stable colorectal cancer. Front Oncol. 2022;12:1018767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu CP, Liu JX, Gu J, Liu F, Li JH, Bin Y, et al. Combination effect of three main constituents from sarcandra glabra inhibits oxidative stress in the mice following acute lung injury: a role of MAPK-NF-κB pathway. Front Pharmacol. 2020;11:580064.

    Article  CAS  PubMed  Google Scholar 

  44. Talukder S, Ahmed KS, Hossain H, Hasan T, Liya IJ, Amanat M, et al. Fimbristylis aestivalis Vahl: a potential source of cyclooxygenase-2 (COX-2) inhibitors. Inflammopharmacology. 2022;30:2301–15.

    Article  CAS  PubMed  Google Scholar 

  45. Pintha K, Chaiwangyen W, Yodkeeree S, Suttajit M, Tantipaiboonwong P. Suppressive effects of rosmarinic acid rich fraction from perilla on oxidative stress, inflammation and metastasis ability in A549 cells exposed to PM via C-Jun, P-65-NF-κB and AKT signaling pathways. Biomolecules. 2021;11:1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han H, Qian C, Zong G, Liu H, Wang F, Tao R, et al. Systemic pharmacological verification of Salvia miltiorrhiza-Ginseng Chinese herb pair in inhibiting spontaneous breast cancer metastasis. Biomed Pharmacother. 2022;156:113897.

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Ji Q, Ye N, Sui H, Zhou L, Zhu H, et al. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE2 mediated JAK2/STAT3 signaling pathway. PLoS One. 2015;10:e0123478.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Karpisheh V, Nikkhoo A, Hojjat-Farsangi M, Namdar A, Azizi G, Ghalamfarsa G, et al. Prostaglandin E2 as a potent therapeutic target for treatment of colon cancer. Prostaglandins Other Lipid Mediat. 2019;144:106338.

    Article  CAS  PubMed  Google Scholar 

  49. Gai JQ, Sheng X, Qin JM, Sun K, Zhao W, Ni L. The effect and mechanism of bufalin on regulating hepatocellular carcinoma cell invasion and metastasis via Wnt/β-catenin signaling pathway. Int J Oncol. 2016;48:338–48.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Yang L, Chien S, Lv Y. Suspension state promotes metastasis of breast cancer cells by up-regulating cyclooxygenase-2. Theranostics. 2018;8:3722–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim KM, Im AR, Kim SH, Hyun JW, Chae S. Timosaponin AIII inhibits melanoma cell migration by suppressing COX-2 and in vivo tumor metastasis. Cancer Sci. 2016;107:181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Makowska KA, Hughes RE, White KJ, Wells CM, Peckham M. Specific myosins control actin organization, cell morphology, and migration in prostate cancer cells. Cell Rep. 2015;13:2118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Soong R, Shah N, Peh BK, Chong PY, Ng SS, Zeps N, et al. The expression of RUNX3 in colorectal cancer is associated with disease stage and patient outcome. Br J Cancer. 2009;100:676–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang S, Li D, Zhuang L, Sun L, Wu J. Identification of Arp2/3 complex subunits as prognostic biomarkers for hepatocellular carcinoma. Front Mol Biosci. 2021;8:690151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lai WY, Huang BT, Wang JW, Lin PY, Yang PC. A novel PD-L1-targeting antagonistic DNA aptamer with antitumor effects. Mol Ther Nucleic Acids. 2016;5:e397.

    Article  CAS  PubMed  Google Scholar 

  56. van Asten SD, de Groot R, van Loenen MM, Castenmiller SM, de Jong J, Monkhorst K, et al. T cells expanded from renal cell carcinoma display tumor-specific CD137 expression but lack significant IFN-γ, TNF-α or IL-2 production. Oncoimmunology. 2021;10:1860482.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Boukouris AE, Theochari M, Stefanou D, Papalambros A, Felekouras E, Gogas H, et al. Latest evidence on immune checkpoint inhibitors in metastatic colorectal cancer: A 2022 update. Crit Rev Oncol Hematol. 2022;173:103663.

    Article  PubMed  Google Scholar 

  58. Jin Z, Sinicrope FA. Mismatch repair-deficient colorectal cancer: building on checkpoint blockade. J Clin Oncol. 2022;40:2735–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rao BB, Robertson S, Philpott J. Checkpoint inhibitor-induced hemorrhagic gastritis with pembrolizumab. Am J Gastroenterol. 2019;114:196.

    Article  PubMed  Google Scholar 

  60. Parikh M, Bajwa P. Immune checkpoint inhibitors in the treatment of renal cell carcinoma. Semin Nephrol. 2020;40:76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luoma AM, Suo S, Williams HL, Sharova T, Sullivan K, Manos M, et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell. 2020;182:655–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chennamadhavuni A, Abushahin L, Jin N, Presley CJ, Manne A. Risk factors and biomarkers for immune-related adverse events: a practical guide to identifying high-risk patients and rechallenging immune checkpoint inhibitors. Front Immunol. 2022;13:779691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiang Z, Yang Y, Yang Y, Zhang Y, Yue Z, Pan Z, et al. Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune. Biomed Pharmacother. 2017;96:378–83.

    Article  CAS  PubMed  Google Scholar 

  64. Chen Y, Zhang Y, Song W, Zhang Y, Dong X, Tan M. Ginsenoside Rh2 improves the cisplatin anti-tumor efect in lung adenocarcinoma A549 cells via superoxide and PD-L1. Anticancer Agents Med Chem. 2020;20:495–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81973734, 81961128020 and 82204802), the Jiangsu Specially Appointed Professorship Foundation (013038021001) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22_2014).

Author information

Authors and Affiliations

Authors

Contributions

HL and RD performed most of the experiments and analyzed the data. CWZ, GFZ and HKH participated in part of the experiments. LR, PC and ZHW provided helps for the statistical analysis. YZ, SYY, and YL conceived supervised the study. HL and SYY wrote the manuscript.

Corresponding authors

Correspondence to Yang Zhao, Su-yun Yu or Yin Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Deng, R., Zhu, Cw. et al. Rosmarinic acid in combination with ginsenoside Rg1 suppresses colon cancer metastasis via co-inhition of COX-2 and PD1/PD-L1 signaling axis. Acta Pharmacol Sin 45, 193–208 (2024). https://doi.org/10.1038/s41401-023-01158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01158-8

Keywords

Search

Quick links