Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DZ2002 alleviates corneal angiogenesis and inflammation in rodent models of dry eye disease via regulating STAT3-PI3K-Akt-NF-κB pathway

Abstract

Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 μL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DZ2002 ameliorates ocular disruption and maintains goblet cells in the BAC-induced DED model.
Fig. 2: DZ2002 decreases angiogenesis and inflammatory signalings in the cornea and conjunctiva of BAC-induced DED rats.
Fig. 3: DZ2002 restrains migration, adhesion, and capillary-like tube formation in TNF-α-elicited HUVECs.
Fig. 4: DZ2002 restrains migration and capillary-like tube formation in TNF-α-elicited HUVECs.
Fig. 5: DZ2002 blocks activation of the STAT3-PI3K-Akt pathway in TNF-α-elicited HUVECs.
Fig. 6: DZ2002 inhibits NF-κB nuclear shift and NF-κB/IκB signaling in TNF-α-elicited HUVECs.
Fig. 7: DZ2002 increases tear production and ameliorates ocular surface barrier damage and inflammation in the SCOP-induced DED model.
Fig. 8: DZ2002 inhibits angiogenesis and inflammation by inhibiting STAT3-PI3K-Akt-NF-κB signaling.

Similar content being viewed by others

References

  1. Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15:276–83.

    Article  PubMed  Google Scholar 

  2. Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R, et al. Corneal angiogenic privilege and its failure. Exp Eye Res. 2021;204:108457.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lyu N, Zhao Y, Xiang J, Fan X, Huang C, Sun X, et al. Inhibiting corneal neovascularization by sustainably releasing anti-VEGF and anti-inflammation drugs from silica-thermogel nanohybrids. Mater Sci Eng C Mater Biol Appl. 2021;128:112274.

    Article  PubMed  Google Scholar 

  4. Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull. 2010;81:198–210.

    Article  PubMed  Google Scholar 

  5. Coster DJ, Williams KA. The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am J Ophthalmol. 2005;140:1112–22.

    Article  PubMed  Google Scholar 

  6. Hu J, Lin S, Huang JJ, Cheung PCK. Mechanistic study of the in vitro and in vivo inhibitory effects of protocatechuic acid and syringic acid on vegf-induced angiogenesis. J Agric Food Chem. 2018;66:6742–51.

    Article  CAS  PubMed  Google Scholar 

  7. Lennikov A, Mirabelli P, Mukwaya A, Schaupper M, Thangavelu M, Lachota M, et al. Selective IKK2 inhibitor IMD0354 disrupts NF-kappaB signaling to suppress corneal inflammation and angiogenesis. Angiogenesis. 2018;21:267–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mirabelli P, Peebo BB, Xeroudaki M, Koulikovska M, Lagali N. Early effects of dexamethasone and anti-VEGF therapy in an inflammatory corneal neovascularization model. Exp Eye Res. 2014;125:118–27.

    Article  CAS  PubMed  Google Scholar 

  9. Ponnaluri VKC, Esteve PO, Ruse CI, Pradhan S. S-adenosylhomocysteine hydrolase participates in DNA methylation inheritance. J Mol Biol. 2018;430:2051–65.

    Article  CAS  PubMed  Google Scholar 

  10. He SJ, Lin ZM, Wu YW, Bai BX, Yang XQ, He PL, et al. Therapeutic effects of DZ2002, a reversible SAHH inhibitor, on lupus-prone NZBxNZW F1 mice via interference with TLR-mediated APC response. Acta Pharmacol Sin. 2014;35:219–29.

    Article  CAS  PubMed  Google Scholar 

  11. He S, Liu X, Lin Z, Liu Y, Gu L, Zhou H, et al. Reversible SAHH inhibitor protects against glomerulonephritis in lupus-prone mice by downregulating renal alpha-actinin-4 expression and stabilizing integrin-cytoskeleton linkage. Arthritis Res Ther. 2019;21:40.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee SJ, Im ST, Wu J, Cho CS, Jo DH, Chen Y, et al. Corneal lymphangiogenesis in dry eye disease is regulated by substance P/neurokinin-1 receptor system through controlling expression of vascular endothelial growth factor receptor 3. Ocul Surf. 2021;22:72–79.

    Article  PubMed  Google Scholar 

  13. Yang FM, Fan D, Yang XQ, Zhu FH, Shao MJ, Li Q, et al. The artemisinin analog SM934 alleviates dry eye disease in rodent models by regulating TLR4/NF-kappaB/NLRP3 signaling. Acta Pharmacol Sin. 2021;42:593–603.

    Article  CAS  PubMed  Google Scholar 

  14. Pauly A, Brignole-Baudouin F, Labbe A, Liang H, Warnet JM, Baudouin C. New tools for the evaluation of toxic ocular surface changes in the rat. Invest Ophthalmol Vis Sci. 2007;48:5473–83.

    Article  PubMed  Google Scholar 

  15. Nakatani H, Gomes P, Bradford R, Guo Q, Safyan E, Hollander DA. Alcaftadine 0.25% versus Olopatadine 0.1% in preventing cedar pollen allergic conjunctivitis in Japan: a randomized study. Ocul Immunol Inflamm. 2019;27:622–31.

    Article  CAS  PubMed  Google Scholar 

  16. Na YJ, Choi KJ, Park SB, Sung HR, Jung WH, Kim HY, et al. Protective effects of carbenoxolone, an 11beta-HSD1 inhibitor, against chemical induced dry eye syndrome. Apoptosis. 2017;22:1441–53.

    Article  CAS  PubMed  Google Scholar 

  17. Lin ZM, Liu YT, Huang YT, Yang XQ, Zhu FH, Tang W, et al. Anti-nociceptive, anti-inflammatory and anti-arthritic activities of pregnane glycosides from the root bark of periploca sepium bunge. J Ethnopharmacol. 2021;265:113345.

    Article  CAS  PubMed  Google Scholar 

  18. He S, Ding H, Chen L, Shen Y, Liu Y, Zhu F, et al. Repression of interferon regulatory factor-4 (IRF4) hyperactivation restricts murine lupus. Signal Transduct Target Ther. 2023;8:188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin ZM, Ma M, Li H, Qi Q, Liu YT, Yan YX, et al. Topical administration of reversible SAHH inhibitor ameliorates imiquimod-induced psoriasis-like skin lesions in mice via suppression of TNF-alpha/IFN-gamma-induced inflammatory response in keratinocytes and T cell-derived IL-17. Pharmacol Res. 2018;129:443–52.

    Article  CAS  PubMed  Google Scholar 

  20. Chin HK, Horng CT, Liu YS, Lu CC, Su CY, Chen PS, et al. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells. Oncol Rep. 2018;39:2351–7.

    CAS  PubMed  Google Scholar 

  21. Chen L, Lin Z, Liu Y, Cao S, Huang Y, Yang X, et al. DZ2002 alleviates psoriasis-like skin lesions via differentially regulating methylation of GATA3 and LCN2 promoters. Int Immunopharmacol. 2021;91:107334.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Q, Zhang Y, Liu X, Wang N, Song Z, Wu K. A Comparison of the effects of benzalkonium chloride on ocular surfaces between C57BL/6 and BALB/c mice. Int J Mol Sci. 2017;18:509.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen W, Li Z, Hu J, Zhang Z, Chen L, Chen Y, et al. Corneal alternations induced by topical application of benzalkonium chloride in rabbit. PLoS One. 2011;6:e26103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin Z, Liu X, Zhou T, Wang Y, Bai L, He H, et al. A mouse dry eye model induced by topical administration of benzalkonium chloride. Mol Vis. 2011;17:257–64.

    PubMed  PubMed Central  Google Scholar 

  25. Shanmugham V, Subban R. Capsanthin from capsicum annum fruits exerts anti-glaucoma, antioxidant, anti-inflammatory activity, and corneal pro-inflammatory cytokine gene expression in a benzalkonium chloride-induced rat dry eye model. J Food Biochem. 2022;46:e14352.

    Article  CAS  PubMed  Google Scholar 

  26. Carpena-Torres C, Pintor J, Perez de Lara MJ, Huete-Toral F, Crooke A, Pastrana C, et al. Optimization of a rabbit dry eye model induced by topical instillation of benzalkonium chloride. J Ophthalmol. 2020;2020:7204951.

    PubMed  PubMed Central  Google Scholar 

  27. Bock F, Maruyama K, Regenfuss B, Hos D, Steven P, Heindl LM, et al. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog Retin Eye Res. 2013;34:89–124.

    Article  CAS  PubMed  Google Scholar 

  28. Ji YW, Lee JL, Kang HG, Gu N, Byun H, Yeo A, et al. Corneal lymphangiogenesis facilitates ocular surface inflammation and cell trafficking in dry eye disease. Ocul Surf. 2018;16:306–13.

    Article  PubMed  Google Scholar 

  29. Liu C, He L, Wang J, Wang Q, Sun C, Li Y, et al. Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways. J Ethnopharmacol. 2020;260:113039.

    Article  CAS  PubMed  Google Scholar 

  30. Patnam M, Dommaraju SR, Masood F, Herbst P, Chang JH, Hu WY, et al. Lymphangiogenesis guidance mechanisms and therapeutic implications in pathological states of the cornea. Cells. 2023;12:319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang T, Wang X, Guo L, Zheng F, Meng C, Zheng Y, et al. Daphnetin inhibits corneal inflammation and neovascularization on a mouse model of corneal alkali burn. Int Immunopharmacol. 2022;103:108434.

    Article  CAS  PubMed  Google Scholar 

  32. Eccles SA. Parallels in invasion and angiogenesis provide pivotal points for therapeutic intervention. Int J Dev Biol. 2004;48:583–98.

    Article  CAS  PubMed  Google Scholar 

  33. Yang W, Yang Y, Wan S, Xu Y, Li J, Zhang L, et al. Exploring the mechanism of the miRNA-145/Paxillin axis in cell metabolism during VEGF-A-induced corneal angiogenesis. Invest Ophthalmol Vis Sci. 2021;62:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meng N, Xie HX, Hou JR, Chen YB, Wu MJ, Guo YW, et al. Design and semisynthesis of oleanolic acid derivatives as VEGF inhibitors: Inhibition of VEGF-induced proliferation, angiogenesis, and VEGFR2 activation in HUVECs. Chin J Nat Med. 2022;20:229–40.

    CAS  PubMed  Google Scholar 

  35. Ouyang B, Xie Y, Zhang C, Deng C, Lv L, Yao J, et al. Extracellular vesicles from human urine-derived stem cells ameliorate erectile dysfunction in a diabetic rat model by delivering proangiogenic microRNA. Sex Med. 2019;7:241–50.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rezzola S, Belleri M, Gariano G, Ribatti D, Costagliola C, Semeraro F, et al. In vitro and ex vivo retina angiogenesis assays. Angiogenesis. 2014;17:429–42.

    Article  CAS  PubMed  Google Scholar 

  37. Zhong W, Montana M, Santosa SM, Isjwara ID, Huang YH, Han KY, et al. Angiogenesis and lymphangiogenesis in corneal transplantation—a review. Surv Ophthalmol. 2018;63:453–79.

    Article  PubMed  Google Scholar 

  38. Kim M, Lee C, Payne R, Yue BY, Chang JH, Ying H. Angiogenesis in glaucoma filtration surgery and neovascular glaucoma: a review. Surv Ophthalmol. 2015;60:524–35.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176:1248–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res. 2021;202:108363.

    Article  CAS  PubMed  Google Scholar 

  41. Droy-Lefaix MT, Bueno L, Caron P, Belot E, Roche O. Ocular inflammation and corneal permeability alteration by benzalkonium chloride in rats: a protective effect of a myosin light chain kinase inhibitor. Invest Ophthalmol Vis Sci. 2013;54:2705–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Chauhan SK, Lee HS, Stevenson W, Schaumburg CS, Sadrai Z, et al. Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis. Invest Ophthalmol Vis Sci. 2013;54:2457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baudouin C, Rolando M, Benitez Del Castillo JM, Messmer EM, Figueiredo FC, Irkec M, et al. Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog Retin Eye Res. 2019;71:68–87.

    Article  CAS  PubMed  Google Scholar 

  44. Dartt DA, Masli S. Conjunctival epithelial and goblet cell function in chronic inflammation and ocular allergic inflammation. Curr Opin Allergy Clin Immunol. 2014;14:464–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Contreras-Ruiz L, Ghosh-Mitra A, Shatos MA, Dartt DA, Masli S. Modulation of conjunctival goblet cell function by inflammatory cytokines. Mediators Inflamm. 2013;2013:636812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stephens DN, McNamara NA. Altered mucin and glycoprotein expression in dry eye disease. Optom Vis Sci. 2015;92:931–8.

    Article  PubMed  Google Scholar 

  47. Zhang M, Tombran-Tink J, Yang S, Zhang X, Li X, Barnstable CJ. PEDF is an endogenous inhibitor of VEGF-R2 angiogenesis signaling in endothelial cells. Exp Eye Res. 2021;213:108828.

    Article  CAS  PubMed  Google Scholar 

  48. Cho HD, Kim JH, Park JK, Hong SM, Kim DH, Seo KI. Kochia scoparia seed extract suppresses VEGF-induced angiogenesis via modulating VEGF receptor 2 and PI3K/AKT/mTOR pathways. Pharm Biol. 2019;57:684–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cho HD, Moon KD, Park KH, Lee YS, Seo KI. Effects of auriculasin on vascular endothelial growth factor (VEGF)-induced angiogenesis via regulation of VEGF receptor 2 signaling pathways in vitro and in vivo. Food Chem Toxicol. 2018;121:612–21.

    Article  CAS  PubMed  Google Scholar 

  50. Cho HD, Lee KW, Won YS, Kim JH, Seo KI. Cultivated Orostachys japonicus extract inhibits VEGF-induced angiogenesis via regulation of VEGFR2 signaling pathway in vitro and in vivo. J Ethnopharmacol. 2020;256:112664.

    Article  CAS  PubMed  Google Scholar 

  51. Sethi G, Sung B, Aggarwal BB. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13:5094–107.

    Article  CAS  PubMed  Google Scholar 

  52. Hadrian K, Willenborg S, Bock F, Cursiefen C, Eming SA, Hos D. Macrophage-mediated tissue vascularization: similarities and differences between cornea and skin. Front Immunol. 2021;12:667830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35:4477–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hall KL, Volk-Draper LD, Flister MJ, Ran S. New model of macrophage acquisition of the lymphatic endothelial phenotype. PLoS One. 2012;7:e31794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23:95–121.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful for financial support from the National Natural Science Foundation of China (81871240), Shanghai Municipal Science and Technology Major Project and the CAS “Light of West China” Program and CAS Interdisciplinary Innovation Team.

Author information

Authors and Affiliations

Authors

Contributions

ZML, SJH, and JPZ contributed to the conception and design of this study; CMW, JWM, XQY, and CCX completed the main part of the experiment; JYY, JWM, JZZ, MX, YFH, XT, DL, FHZ, and XYX participated in the in vivo and in vitro experiment; MNC participated in data statistic analysis; ZML, SJH, and JPZ contributed to drafting the manuscript and revising critically for important intellectual content.

Corresponding authors

Correspondence to Shi-jun He, Ze-min Lin or Jian-ping Zuo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Cm., Mao, Jw., Zhu, Jz. et al. DZ2002 alleviates corneal angiogenesis and inflammation in rodent models of dry eye disease via regulating STAT3-PI3K-Akt-NF-κB pathway. Acta Pharmacol Sin 45, 166–179 (2024). https://doi.org/10.1038/s41401-023-01146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01146-y

Keywords

Search

Quick links