Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dl-3-n-butylphthalide promotes angiogenesis in ischemic stroke mice through upregulating autocrine and paracrine sonic hedgehog

Abstract

Dl-3-n-butylphthalide (NBP) is a small-molecule drug used in the treatment of ischemic stroke in China, which is proven to ameliorate the symptoms of ischemic stroke and improve the prognosis of patients. Previous studies have shown that NBP accelerates recovery after stroke by promoting angiogenesis. In this study, we investigated the mechanisms underlying the angiogenesis-promoting effects of NBP in ischemic stroke models in vitro and in vivo. OGD/R model was established in human umbilical vein endothelial cells (HUVECs) and human brain microvascular endothelial cells (HBMECs), while the tMCAO model was established in mice. The cells were pretreated with NBP (10, 50, 100 µM); the mice were administered NBP (4, 8 mg/kg, i.v.) twice after tMCAO. We showed that NBP treatment significantly stimulated angiogenesis by inducing massive production of angiogenic growth factors VEGFA and CD31 in both in vitro and in vivo models of ischemic stroke. NBP also increased the tubule formation rate and migration capability of HUVECs in vitro. By conducting the weighted gene co-expression network analysis, we found that these effects were achieved by upregulating the expression of a hedgehog signaling pathway. We demonstrated that NBP treatment not only changed the levels of regulators of the hedgehog signaling pathway but also activated the transcription factor Gli1. The pro-angiogenesis effect of NBP was abolished when the hedgehog signaling pathway was inhibited by GDC-0449 in HUVECs, by Sonic Hedgehog(Shh) knockdown in HUVECs, or by intracerebroventricular injection of AAV-shRNA(shh)-CMV in tMCAO mice. Furthermore, we found that HUVECs produced a pro-angiogenic response not only to autocrine Shh, but also to paracrine Shh secreted by astrocytes. Together, we demonstrate that NBP promotes angiogenesis via upregulating the hedgehog signaling pathway. Our results provide an experimental basis for the clinical use of NBP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NBP increases the expression of angiogenic growth factors in HUVECs after OGD/R (n = 3, mean ± SEM).
Fig. 2: NBP significantly improves the neurological function and reduces the cerebral infarction volume ratio of C57BL/6 J mice after tMCAO (n = 10, mean ± SEM).
Fig. 3: NBP enhances the activity of the Hedgehog signaling pathway (n = 3, mean ± SEM).
Fig. 4: Downregulating Sonic Hedgehog expression inhibits the effect of NBP (n = 3, mean ± SEM).
Fig. 5: NBP stimulates paracrine expression of Shh by astrocytes to promote angiogenesis (n = 3, mean ± SEM).
Fig. 6: Knockdown of Shh inhibits the angiogenesis-promoting effect of NBP in mice (n = 10, mean ± SEM).

Similar content being viewed by others

References

  1. Wang J, Xing H, Wan L, Jiang X, Wang C, Wu Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother. 2018;105:518–25.

    Article  PubMed  Google Scholar 

  2. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2021;20:795–820.

    Article  Google Scholar 

  3. Xu R, Bai Y, Min S, Xu X, Tang T, Ju S. In vivo monitoring and assessment of exogenous mesenchymal stem cell-derived exosomes in mice with ischemic stroke by molecular imaging. Int J Nanomed. 2020;15:9011–23.

    Article  CAS  Google Scholar 

  4. Papanagiotou P, White CJ. Endovascular reperfusion strategies for acute stroke. JACC Cardiovasc Inter. 2016;9:307–17.

    Article  Google Scholar 

  5. Davis CK, Jain SA, Bae ON, Majid A, Rajanikant GK. Hypoxia mimetic agents for ischemic stroke. Front Cell Dev Biol. 2018;6:175.

    Article  PubMed  Google Scholar 

  6. Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial cells: role of the immune response in ischemic stroke. Front Immunol. 2020;11:294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dąbrowski J, Czajka A, Zielińska-Turek J, Jaroszyński J, Furtak-Niczyporuk M, Mela A, et al. Brain functional reserve in the context of neuroplasticity after stroke. Neural Plast. 2019;2019:9708905.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165–260.

    Article  Google Scholar 

  9. Durukan A, Strbian D, Tatlisumak T. Rodent models of ischemic stroke: a useful tool for stroke drug development. Curr Pharm Des. 2008;14:59–70.

    Article  Google Scholar 

  10. Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021;335:113518.

    Article  CAS  PubMed  Google Scholar 

  11. Hatakeyama M, Ninomiya I, Kanazawa M. Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen Res. 2020;15:16–9.

    Article  PubMed  Google Scholar 

  12. Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol. 2009;117:481–96.

    Article  PubMed  Google Scholar 

  13. Shim JW, Madsen JR. VEGF signaling in neurological disorders. Int J Mol Sci. 2018;19:275.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Greenberg DA, Jin K. Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci. 2013;70:1753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greenberg DA, Jin K. From angiogenesis to neuropathology. Nature. 2005;438:954–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Ma F, Huang L, Zhang Y, Peng Y, Xing C, et al. Dl-3-n-Butylphthalide (NBP): a promising therapeutic agent for ischemic stroke. CNS Neurol Disord Drug Targets. 2018;17:338–47.

    Article  CAS  PubMed  Google Scholar 

  17. Chen XQ, Qiu K, Liu H, He Q, Bai JH, Lu W. Application and prospects of butylphthalide for the treatment of neurologic diseases. Chin Med J (Engl). 2019;132:1467–77.

    Article  CAS  PubMed  Google Scholar 

  18. Xing X, Huang L, Lv Y, Liu X, Su R, Li X, et al. DL-3-n-butylphthalide protected retinal Müller cells dysfunction from oxidative stress. Curr Eye Res. 2019;44:1112–20.

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Liu Y, Zhang X, Chen R, Zhang L, Xue J, et al. Dl-3-N-butylphthalide alleviates the blood-brain barrier permeability of focal cerebral ischemia reperfusion in mice. Neuroscience. 2019;413:99–107.

    Article  CAS  PubMed  Google Scholar 

  20. Peng Y, Zeng X, Feng Y, Wang X. Antiplatelet and antithrombotic activity of L-3-n-butylphthalide in rats. J Cardiovasc Pharmacol. 2004;43:876–81.

    Article  CAS  PubMed  Google Scholar 

  21. Huang L, Wang S, Ma F, Zhang Y, Peng Y, Xing C, et al. From stroke to neurodegenerative diseases: the multi-target neuroprotective effects of 3-n-butylphthalide and its derivatives. Pharmacol Res. 2018;135:201–11.

    Article  CAS  PubMed  Google Scholar 

  22. Abdoulaye IA, Guo YJ. A review of recent advances in neuroprotective potential of 3-N-butylphthalide and its derivatives. Biomed Res Int. 2016;2016:5012341.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liao W, Zhong Y, Cheng W, Dong LF. 3-N-butylphthalide inhibits neuronal apoptosis in rats with cerebral infarction via targeting P38/MAPK. Eur Rev Med Pharmacol Sci. 2019;23:144–52.

    CAS  PubMed  Google Scholar 

  24. Wei ZZ, Chen D, Lee MJH, Zhao Y, Gu X, Yu SP, et al. DL-3-n-butylphthalide increases collateriogenesis and functional recovery after focal ischemic stroke in mice. Aging Dis. 2021;12:1835–49.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qin C, Zhou P, Wang L, Mamtilahun M, Li W, Zhang Z, et al. Dl-3-N- butylphthalide attenuates ischemic reperfusion injury by improving the function of cerebral artery and circulation. J Cereb Blood Flow Metab. 2019;39:2011–21.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang T, Jia W, Sun X. 3-n-Butylphthalide (NBP) reduces apoptosis and enhances vascular endothelial growth factor (VEGF) up-regulation in diabetic rats. Neurol Res. 2010;32:390–6.

    Article  PubMed  Google Scholar 

  27. Zhu BL, Xie CL, Hu NN, Zhu XB, Liu CF. Inhibiting of GRASP65 phosphorylation by DL-3-N-Butylphthalide protects against cerebral ischemia-reperfusion injury via ERK signaling. Behav Neurol. 2018;2018:5701–19.

    Article  Google Scholar 

  28. Liu S, Chang L, Wei C. The sonic hedgehog pathway mediates Tongxinluo capsule-induced protection against blood-brain barrier disruption after ischaemic stroke in mice. Basic Clin Pharmacol Toxicol. 2019;124:660–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou PT, Wang LP, Qu MJ, Shen H, Zheng HR, Deng LD, et al. Dl-3-N-butylphthalide promotes angiogenesis and upregulates sonic hedgehog expression after cerebral ischemia in rats. CNS Neurosci Ther. 2019;25:748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumari S, Chaurasia SN, Kumar K, Dash D. Anti-apoptotic role of sonic hedgehog on blood platelets. Thromb Res. 2014;134:1311–5.

    Article  CAS  PubMed  Google Scholar 

  31. Jin Y, Barnett A, Zhang Y, Yu X, Luo Y. Poststroke sonic hedgehog agonist treatment improves functional recovery by enhancing neurogenesis and angiogenesis. Stroke. 2017;48:1636–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meadows KL. Experimental models of focal and multifocal cerebral ischemia: a review. Rev Neurosci. 2018;29:661–74.

    Article  PubMed  Google Scholar 

  34. Tang H, Gamdzyk M, Huang L, Gao L, Lenahan C, Kang R, et al. Delayed recanalization after MCAO ameliorates ischemic stroke by inhibiting apoptosis via HGF/c-Met/STAT3/Bcl-2 pathway in rats. Exp Neurol. 2020;330:113359.

    Article  CAS  PubMed  Google Scholar 

  35. Yang J, Yan H, Li S, Zhang M. Berberine ameliorates MCAO induced cerebral ischemia/reperfusion injury via activation of the BDNF-TrkB-PI3K/Akt signaling pathway. Neurochem Res. 2018;43:702–10.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou Z, Xu N, Matei N, McBride DW, Ding Y, Liang H, et al. Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats. J Cereb Blood Flow Metab. 2021;41:267–81.

    Article  CAS  PubMed  Google Scholar 

  37. Liao SJ, Lin JW, Pei Z, Liu CL, Zeng JS, Huang RX. Enhanced angiogenesis with dl-3n-butylphthalide treatment after focal cerebral ischemia in RHRSP. Brain Res. 2009;1289:69–78.

    Article  CAS  PubMed  Google Scholar 

  38. Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46:i11.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  40. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dang R, Wang M, Li X, Wang H, Liu L, Wu Q, et al. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J Neuroinflammation. 2022;19:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, et al. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol. 2022;12:210289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu L, Zhao B, Xiong X, Xia Z. The neuroprotective roles of sonic hedgehog signaling pathway in ischemic stroke. Neurochem Res. 2018;43:2199–211.

    Article  CAS  PubMed  Google Scholar 

  44. Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA. Noncanonical hedgehog signaling. Vitam Horm. 2012;88:55–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petrov K, Wierbowski BM, Salic A. Sending and receiving hedgehog signals. Annu Rev Cell Dev Biol. 2017;33:145–68.

    Article  CAS  PubMed  Google Scholar 

  46. Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev. 2017;74:76–97.

    Article  PubMed  Google Scholar 

  47. Pola R, Ling LE, Aprahamian TR, Barban E, Bosch-Marce M, Curry C, et al. Postnatal recapitulation of embryonichedgehog pathway in response to skeletal muscle ischemia. Circulation. 2003;108:479–85.22

    Article  PubMed  Google Scholar 

  48. Byrd N, Grabel L. Hedgehog signaling in murine vasculogenesis andangiogenesis. Trends Cardiovasc Med. 2004;14:308–13.

    Article  CAS  PubMed  Google Scholar 

  49. Briscoe J, Therond PP. The mechanisms of Hedgehog signalling andits roles in development and disease. Nat Rev Mol Cell Biol. 2013;14:416–29.

    Article  PubMed  Google Scholar 

  50. Arai K, Lo EH. An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. J Neurosci. 2009;29:4351–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu X, Liu R, Fu D, Wu H, Zhao X, Sun Y, et al. Dl-3-n-butylphthalide inhibits neuroinflammation by stimulating foxp3 and Ki-67 in an ischemic stroke model. Aging (Albany NY). 2021;13:3763–78.

    Article  CAS  PubMed  Google Scholar 

  52. Huang Y, Pan L, Wu T. Improvement of cerebral ischemia-reperfusion injury by L-3-n-butylphthalide through promoting angiogenesis. J Exp Brain Res. 2021;239:341–50.

    Article  CAS  Google Scholar 

  53. Wei H, Zhan LP, Zhang B, Li YP, Pei Z, Li L. dl-3n-butylphthalide reduces oxygen-glucose deprivation-induced endothelial cell damage by increasing PGC-1α. Eur Rev Med Pharmacol Sci. 2019;23:4481–90.

    CAS  PubMed  Google Scholar 

  54. Chen N, Zhou Z, Li J, Li B, Feng J, He D, et al. 3-n-butylphthalide exerts neuroprotective effects by enhancing anti-oxidation and attenuating mitochondrial dysfunction in an in vitro model of ischemic stroke. Drug Des Dev Ther. 2018;12:4261–71.

    Article  CAS  Google Scholar 

  55. Yang CS, Guo A, Li Y, Shi K, Shi FD, Li M. Dl-3-n-butylphthalide reduces neurovascular inflammation and ischemic brain injury in mice. Aging Dis. 2019;10:964–76.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang Y, Shen Y, Liu Z, Gu J, Xu C, Qian S. Dl-NBP (Dl-3-N-Butylphthalide) treatment promotes neurological functional recovery accompanied by the upregulation of white matter integrity and HIF-1α/VEGF/Notch/Dll4 expression. Front Pharmacol. 2019;10:1595.

    Article  CAS  PubMed  Google Scholar 

  57. Rakocevic J, Orlic D, Mitrovic-Ajtic O, Tomasevic M, Dobric M, Zlatic N, et al. Endothelial cell markers from clinician’s perspective. Exp Mol Pathol. 2017;102:303–13.

    Article  CAS  PubMed  Google Scholar 

  58. Wang YB, Yuan HF, Zhi W, Wang Q, Hao GZ, Jiang YF. The effect and mechanism of dl-3-n-butylphthalide on angiogenesis in a rat model of chronic myocardial ischemia. Am J Transl Res. 2022;14:4719–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Katoh M. Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond). 2019;133:953–70.

    Article  CAS  PubMed  Google Scholar 

  60. Niu XL, Jiang X, Xu GD, Zheng GM, Tang ZP, Yin N, et al. DL-3-n-butylphthalide alleviates vascular cognitive impairment by regulating endoplasmic reticulum stress and the Shh/Ptch1 signaling-pathway in rats. J Cell Physiol. 2019;234:12604–14.

    Article  CAS  PubMed  Google Scholar 

  61. Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol. 2016;131:323–45.

    Article  CAS  PubMed  Google Scholar 

  62. Uchiyama M, Nakao A, Kurita Y, Fukushi I, Takeda K, Numata T, et al. O2-dependent protein internalization underlies astrocytic sensing of acute hypoxia by restricting multimodal TRPA1 channel responses. Curr Biol. 2020;30:3378–96.e7.

    Article  CAS  PubMed  Google Scholar 

  63. Tang T, Hu L, Liu Y, Fu X, Li J, Yan F, et al. Sex-associated differences in neurovascular dysfunction during ischemic stroke. Front Mol Neurosci. 2022;15:860959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shen D, Wu W, Liu J, Lan T, Xiao Z, Gai K, et al. Ferroptosis in oligodendrocyte progenitor cells mediates white matter injury after hemorrhagic stroke. Cell Death Dis. 2022;13:259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, et al. Stromal cell-derived factor 1alpha mediates neural progenitor cell motilityafter focal cerebral ischemia. J Cereb Blood Flow Metab. 2006;26:125–34.

    Article  CAS  PubMed  Google Scholar 

  66. Arai K, Lo EH. Wiring and plumbing: oligodendrocyte precursors and angiogenesis in the oligovascular niche. J Cereb Blood Flow Metab. 2021;41:2132–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the key program of the Educational Department of Liao Ning Province (Nos. LJKZZ20220100).

Author information

Authors and Affiliations

Authors

Contributions

WC, MJD, and STL designed the research. MJD and XXG performed most of the experiments and data analyses. SMJ and STL performed some experiments. HD was responsible for bioinformatics analyses, and MJD wrote and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Mj., Gui, Xx., Jia, Sm. et al. Dl-3-n-butylphthalide promotes angiogenesis in ischemic stroke mice through upregulating autocrine and paracrine sonic hedgehog. Acta Pharmacol Sin 44, 2404–2417 (2023). https://doi.org/10.1038/s41401-023-01137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01137-z

Keywords

Search

Quick links