Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiogenesis after ischemic stroke

Abstract

Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of key steps in angiogenesis after ischemic stroke.
Fig. 2: Major stem cell therapies and its mechanisms for ischemic stroke.
Fig. 3: Major factors and signaling pathways of angiogenesis after cerebral ischemia. Ischemia or hypoxia resulting from cerebral ischemia increased VEGF expression by upregulating HIF-1α and 15-LO-1/15-HETE systems, and subsequently VEGF promoted pericyte coverage of ECs by increasing N-cadherin expression on brain capillaries.

Similar content being viewed by others

References

  1. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17:18–29.

    Article  PubMed  Google Scholar 

  2. Silver JR. A history of Stoke Mandeville Hospital and the National Spinal Injuries Centre. J R Coll Physicians Edinb. 2019;49:328–35.

    Article  PubMed  Google Scholar 

  3. Chen YC, Wu JS, Yang ST, Huang CY, Chang C, Sun GY, et al. Stroke, angiogenesis and phytochemicals. Front Biosci (Sch Ed). 2012;4:599–610.

    CAS  Google Scholar 

  4. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145:e153–e639.

    Article  PubMed  Google Scholar 

  5. Yoshida H, Yanai H, Namiki Y, Fukatsu-Sasaki K, Furutani N, Tada N. Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury. CNS Drug Rev. 2006;12:9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang XX, Wang F, Mao GH, Wu JC, Li M, Han R, et al. NADPH is superior to NADH or edaravone in ameliorating metabolic disturbance and brain injury in ischemic stroke. Acta Pharmacol Sin. 2022;43:529–40.

    Article  CAS  PubMed  Google Scholar 

  7. Liu XQ, Sheng R, Qin ZH. The neuroprotective mechanism of brain ischemic preconditioning. Acta Pharmacol Sin. 2009;30:1071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hankey GJ. Stroke. Lancet. 2017;389:641–54.

    Article  PubMed  Google Scholar 

  9. Marler JR, Goldstein LB. Medicine. Stroke–tPA and the clinic. Science. 2003;301:1677.

    Article  CAS  PubMed  Google Scholar 

  10. Wang P, Miao CY. NAMPT as a therapeutic target against stroke. Trends Pharmacol Sci. 2015;36:891–905.

    Article  CAS  PubMed  Google Scholar 

  11. Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci. 2021;24:1198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin TN, Sun SW, Cheung WM, Li F, Chang C. Dynamic changes in cerebral blood flow and angiogenesis after transient focal cerebral ischemia in rats. Evaluation with serial magnetic resonance imaging. Stroke. 2002;33:2985–91.

    Article  PubMed  Google Scholar 

  13. Manoonkitiwongsa PS, Jackson-Friedman C, McMillan PJ, Schultz RL, Lyden PD. Angiogenesis after stroke is correlated with increased numbers of macrophages: the clean-up hypothesis. J Cereb Blood Flow Metab. 2001;21:1223–31.

    Article  CAS  PubMed  Google Scholar 

  14. Cleaver O. Mouse models of vascular development and disease. Curr Opin Hematol. 2021;28:179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA, Lawton MT, et al. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol. 2014;115:138–56.

    Article  PubMed  Google Scholar 

  16. Fan Y, Yang GY. Therapeutic angiogenesis for brain ischemia: a brief review. J Neuroimmune Pharmacol. 2007;2:284–9.

    Article  PubMed  Google Scholar 

  17. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–95.

    Article  CAS  PubMed  Google Scholar 

  18. Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol. 2009;117:481–96.

    Article  PubMed  Google Scholar 

  19. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25:1794–8.

    Article  CAS  PubMed  Google Scholar 

  20. Yang Y, Torbey MT. Angiogenesis and blood-brain barrier permeability in vascular remodeling after stroke. Curr Neuropharmacol. 2020;18:1250–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol. 2000;156:965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23:879–94.

    Article  PubMed  Google Scholar 

  23. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–66.

    Article  CAS  PubMed  Google Scholar 

  24. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    Article  CAS  PubMed  Google Scholar 

  25. Risau W. Development and differentiation of endothelium. Kidney Int Suppl. 1998;67:S3–6.

    Article  CAS  PubMed  Google Scholar 

  26. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carmichael ST. Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke. 2008;39:1380–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26:13007–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Esquiva G, Grayston A, Rosell A. Revascularization and endothelial progenitor cells in stroke. Am J Physiol Cell Physiol. 2018;315:C664–C74.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu SZ, Szeto V, Bao MH, Sun HS, Feng ZP. Pharmacological approaches promoting stem cell-based therapy following ischemic stroke insults. Acta Pharmacol Sin. 2018;39:695–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nagai N, Kawao N, Okada K, Okumoto K, Teramura T, Ueshima S, et al. Systemic transplantation of embryonic stem cells accelerates brain lesion decrease and angiogenesis. Neuroreport. 2010;21:575–9.

    Article  PubMed  Google Scholar 

  32. Shyu WC, Lin SZ, Chiang MF, Su CY, Li H. Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats. J Neurosci. 2006;26:3444–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li J, Zhang Q, Wang W, Lin F, Wang S, Zhao J. Mesenchymal stem cell therapy for ischemic stroke: A look into treatment mechanism and therapeutic potential. J Neurol. 2021;268:4095–107.

    Article  PubMed  Google Scholar 

  34. Tang Y, Wang J, Lin X, Wang L, Shao B, Jin K, et al. Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis. J Cereb Blood Flow Metab. 2014;34:1138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kishida N, Maki T, Takagi Y, Yasuda K, Kinoshita H, Ayaki T, et al. Role of perivascular oligodendrocyte precursor cells in angiogenesis after brain ischemia. J Am Heart Assoc. 2019;8:e011824.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rosenkranz K, Kumbruch S, Tenbusch M, Marcus K, Marschner K, Dermietzel R, et al. Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats. Cell Tissue Res. 2012;348:429–38.

    Article  CAS  PubMed  Google Scholar 

  37. Mao D, Yao X, Feng G, Yang X, Mao L, Wang X, et al. Skin-derived precursor cells promote angiogenesis and stimulate proliferation of endogenous neural stem cells after cerebral infarction. Biomed Res Int. 2015;2015:945846.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rakkar K, Othman O, Sprigg N, Bath P, Bayraktutan U. Endothelial progenitor cells, potential biomarkers for diagnosis and prognosis of ischemic stroke: protocol for an observational case-control study. Neural Regen Res. 2020;15:1300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takizawa S, Nagata E, Nakayama T, Masuda H, Asahara T. Recent progress in endothelial progenitor cell culture systems: potential for stroke therapy. Neurol Med Chir (Tokyo). 2016;56:302–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hayakawa K, Pham LD, Katusic ZS, Arai K, Lo EH. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci USA. 2012;109:7505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mao L, Huang M, Chen SC, Li YN, Xia YP, He QW, et al. Endogenous endothelial progenitor cells participate in neovascularization via CXCR4/SDF-1 axis and improve outcome after stroke. CNS Neurosci Ther. 2014;20:460–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Loiola RA, Garcia-Gabilondo M, Grayston A, Bugno P, Kowalska A, Duban-Deweer S, et al. Secretome of endothelial progenitor cells from stroke patients promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Stem Cell Res Ther. 2021;12:552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol. 2010;67:488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kong Z, Hong Y, Zhu J, Cheng X, Liu Y. Endothelial progenitor cells improve functional recovery in focal cerebral ischemia of rat by promoting angiogenesis via VEGF. J Clin Neurosci. 2018;55:116–21.

    Article  CAS  PubMed  Google Scholar 

  45. Geng J, Wang L, Qu M, Song Y, Lin X, Chen Y, et al. Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1alpha. Stem Cell Res Ther. 2017;8:163.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002;90:284–8.

    Article  CAS  PubMed  Google Scholar 

  47. Moubarik C, Guillet B, Youssef B, Codaccioni JL, Piercecchi MD, Sabatier F, et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev Rep. 2011;7:208–20.

    Article  PubMed  Google Scholar 

  48. Morancho A, Ma F, Barcelo V, Giralt D, Montaner J, Rosell A. Impaired vascular remodeling after endothelial progenitor cell transplantation in MMP9-deficient mice suffering cortical cerebral ischemia. J Cereb Blood Flow Metab. 2015;35:1547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang R, Cheng TX, Lai XL. Mechanism of ischemic brain injury repair by endothelial progenitor cell-derived exosomes. Mol Med Rep. 2022;26:269.

    Article  CAS  PubMed  Google Scholar 

  50. Peng C, Dong XH, Liu JL, Tao YL, Xu CF, Wang LP, et al. A preventive injection of endothelial progenitor cells prolongs lifespan in stroke-prone spontaneously hypertensive rats. Clin Sci (Lond). 2018;132:1797–810.

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Chang S, Li W, Tang G, Ma Y, Liu Y, et al. cxcl12-engineered endothelial progenitor cells enhance neurogenesis and angiogenesis after ischemic brain injury in mice. Stem Cell Res Ther. 2018;9:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12. Cell Mol Immunol. 2018;15:299–311.

    Article  CAS  PubMed  Google Scholar 

  53. Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA. Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthop Surg. 2017;9:13–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23:1128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang Y, Lin H, Shen H, Wang B, Lei G, Tuan RS. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater. 2018;69:71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Christ B, Dollinger MM. The generation of hepatocytes from mesenchymal stem cells and engraftment into the liver. Curr Opin Organ Transpl. 2011;16:69–75.

    Article  Google Scholar 

  57. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999;96:10711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Azad TD, Veeravagu A, Steinberg GK. Neurorestoration after stroke. Neurosurg Focus. 2016;40:E2.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhu Y, Guan YM, Huang HL, Wang QS. Human umbilical cord blood mesenchymal stem cell transplantation suppresses inflammatory responses and neuronal apoptosis during early stage of focal cerebral ischemia in rabbits. Acta Pharmacol Sin. 2014;35:585–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2010;88:1017–25.

    CAS  PubMed  Google Scholar 

  61. Sheikh AM, Yano S, Mitaki S, Haque MA, Yamaguchi S, Nagai A. A Mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. Exp Neurol. 2019;311:182–93.

    Article  CAS  PubMed  Google Scholar 

  62. Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med. 2010;3:248–69.

    PubMed  PubMed Central  Google Scholar 

  63. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389–97.

    Article  CAS  PubMed  Google Scholar 

  64. Bao X, Feng M, Wei J, Han Q, Zhao H, Li G, et al. Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci. 2011;34:87–98.

    Article  PubMed  Google Scholar 

  65. Guo F, Lv S, Lou Y, Tu W, Liao W, Wang Y, et al. Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke: involvement of notch signalling. Cell Biol Int. 2012;36:997–1004.

    Article  CAS  PubMed  Google Scholar 

  66. Yang Z, Cai X, Xu A, Xu F, Liang Q. Bone marrow stromal cell transplantation through tail vein injection promotes angiogenesis and vascular endothelial growth factor expression in cerebral infarct area in rats. Cytotherapy. 2015;17:1200–12.

    Article  CAS  PubMed  Google Scholar 

  67. Moisan A, Favre I, Rome C, De Fraipont F, Grillon E, Coquery N, et al. Intravenous injection of clinical grade human MSCs after experimental stroke: functional benefit and microvascular effect. Cell Transpl. 2016;25:2157–71.

    Article  Google Scholar 

  68. Ma XL, Liu KD, Li FC, Jiang XM, Jiang L, Li HL. Human mesenchymal stem cells increases expression of α-tubulin and angiopoietin 1 and 2 in focal cerebral ischemia and reperfusion. Curr Neurovasc Res. 2013;10:103–11.

    Article  CAS  PubMed  Google Scholar 

  69. Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 2007;27:1684–91.

    Article  CAS  PubMed  Google Scholar 

  70. Liu K, Guo L, Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res. 2019;123:74–80.

    Article  CAS  PubMed  Google Scholar 

  71. Komatsu K, Honmou O, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia. Brain Res. 2010;1334:84–92.

    Article  CAS  PubMed  Google Scholar 

  72. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, et al. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129:2734–45.

    Article  CAS  PubMed  Google Scholar 

  73. Lee S, Kim OJ, Lee KO, Jung H, Oh SH, Kim NK. Enhancing the therapeutic potential of CCL2-overexpressing mesenchymal stem cells in acute stroke. Int J Mol Sci. 2020;21:7795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang Q, Zhou ML, Wu XF, Li Z, Liu B, Gao WB, et al. Promoting therapeutic angiogenesis of focal cerebral ischemia using thrombospondin-4 (TSP4) gene-modified bone marrow stromal cells (BMSCs) in a rat model. J Transl Med. 2019;17:111.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yu X, Chen D, Zhang Y, Wu X, Huang Z, Zhou H, et al. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. J Neurol Sci. 2012;316:141–9.

    Article  CAS  PubMed  Google Scholar 

  76. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:329–40.

    Article  CAS  PubMed  Google Scholar 

  77. Hu Y, Chen W, Wu L, Jiang L, Qin H, Tang N. Hypoxic preconditioning improves the survival and neural effects of transplanted mesenchymal stem cells via CXCL12/CXCR4 signalling in a rat model of cerebral infarction. Cell Biochem Funct. 2019;37:504–15.

    Article  CAS  PubMed  Google Scholar 

  78. Wei L, Fraser JL, Lu ZY, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46:635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bi M, Wang J, Zhang Y, Li L, Wang L, Yao R, et al. Bone mesenchymal stem cells transplantation combined with mild hypothermia improves the prognosis of cerebral ischemia in rats. PLoS One. 2018;13:e0197405.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu D, Ye Y, Xu L, Yuan W, Zhang Q. Icariin and mesenchymal stem cells synergistically promote angiogenesis and neurogenesis after cerebral ischemia via PI3K and ERK1/2 pathways. Biomed Pharmacother. 2018;108:663–9.

    Article  CAS  PubMed  Google Scholar 

  81. Shi Y, Shi H, Nomi A, Lei-Lei Z, Zhang B, Qian H. Mesenchymal stem cell-derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration. Cytotherapy. 2019;21:497–508.

    Article  CAS  PubMed  Google Scholar 

  82. Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother. 2021;140:111709.

    Article  CAS  PubMed  Google Scholar 

  83. Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases. 2017;8:220–32.

    Article  CAS  PubMed  Google Scholar 

  84. Hu H, Hu X, Li L, Fang Y, Yang Y, Gu J, et al. Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of MiR-21-5p. Biomolecules. 2022;12:883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang H, Wu J, Wu J, Fan Q, Zhou J, Wu J, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J Nanobiotechnol. 2019;17:29.

    Article  Google Scholar 

  86. Pan Q, Wang Y, Lan Q, Wu W, Li Z, Ma X, et al. Exosomes derived from mesenchymal stem cells ameliorate hypoxia/reoxygenation-injured ECs via transferring MicroRNA-126. Stem Cells Int. 2019;2019:2831756.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Doeppner TR, Herz J, Gorgens A, Schlechter J, Ludwig AK, Radtke S, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 2015;4:1131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dumbrava DA, Surugiu R, Borger V, Ruscu M, Tertel T, Giebel B, et al. Mesenchymal stromal cell-derived small extracellular vesicles promote neurological recovery and brain remodeling after distal middle cerebral artery occlusion in aged rats. Geroscience. 2022;44:293–310.

    Article  PubMed  Google Scholar 

  89. Gregorius J, Wang C, Stambouli O, Hussner T, Qi Y, Tertel T, et al. Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Res Cardiol. 2021;116:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee JY, Kim E, Choi SM, Kim DW, Kim KP, Lee I, et al. Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci Rep. 2016;6:33038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tuazon JP, Castelli V, Lee JY, Desideri GB, Stuppia L, Cimini AM, et al. Neural stem cells. Adv Exp Med Biol. 2019;1201:79–91.

    Article  CAS  PubMed  Google Scholar 

  92. Moriyama Y, Takagi N, Hashimura K, Itokawa C, Tanonaka K. Intravenous injection of neural progenitor cells facilitates angiogenesis after cerebral ischemia. Brain Behav. 2013;3:43–53.

    Article  PubMed  Google Scholar 

  93. Dibajnia P, Morshead CM. Role of neural precursor cells in promoting repair following stroke. Acta Pharmacol Sin. 2013;34:78–90.

    Article  CAS  PubMed  Google Scholar 

  94. Wang LP, Pan J, Li Y, Geng J, Liu C, Zhang LY, et al. Oligodendrocyte precursor cell transplantation promotes angiogenesis and remyelination via Wnt/beta-catenin pathway in a mouse model of middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2022;42:757–70.

    Article  CAS  PubMed  Google Scholar 

  95. Savitz SI, Rosenbaum DM, Dinsmore JH, Wechsler LR, Caplan LR. Cell transplantation for stroke. Ann Neurol. 2002;52:266–75.

    Article  PubMed  Google Scholar 

  96. Zhang P, Li J, Liu Y, Chen X, Lu H, Kang Q, et al. Human embryonic neural stem cell transplantation increases subventricular zone cell proliferation and promotes peri-infarct angiogenesis after focal cerebral ischemia. Neuropathology. 2011;31:384–91.

    Article  PubMed  Google Scholar 

  97. Chau MJ, Deveau TC, Song M, Gu X, Chen D, Wei L. iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells. 2014;32:3075–87.

    Article  CAS  PubMed  Google Scholar 

  98. Xia Y, Ling X, Hu G, Zhu Q, Zhang J, Li Q, et al. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. Stem Cell Res Ther. 2020;11:313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang J, Yu L, Jiang C, Chen M, Ou C, Wang J. Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis. Brain Behav Immun. 2013;34:56–66.

    Article  PubMed  Google Scholar 

  100. Kikuchi-Taura A, Okinaka Y, Takeuchi Y, Ogawa Y, Maeda M, Kataoka Y, et al. Bone marrow mononuclear cells activate angiogenesis via gap junction-mediated cell-cell interaction. Stroke. 2020;51:1279–89.

    Article  CAS  PubMed  Google Scholar 

  101. Pedragosa J, Miro-Mur F, Otxoa-de-Amezaga A, Justicia C, Ruiz-Jaen F, Ponsaerts P, et al. CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. J Cereb Blood Flow Metab. 2020;40:S98–S116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;114:330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bae CY, Sun HS. TRPM7 in cerebral ischemia and potential target for drug development in stroke. Acta Pharmacol Sin. 2011;32:725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang Y, Cai Y, Zhang Y, Liu J, Xu Z. Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen-glucose deprivation in vitro through MicroRNA-181b/TRPM7 axis. J Mol Neurosci. 2018;65:74–83.

    Article  CAS  PubMed  Google Scholar 

  105. Molbay M, Ozaydin-Goksu E, Kipmen-Korgun D, Unal A, Ozekinci M, Cebeci E, et al. Human placental trophoblast progenitor cells (hTPCs) promote angiogenesis and neurogenesis after focal cerebral ischemia in rats. Int J Neurosci. 2022;132:258–68.

    Article  CAS  PubMed  Google Scholar 

  106. Liang CC, Shaw SW, Huang YH, Lee TH. Human amniotic fluid stem cells can improve cerebral vascular remodelling and neurological function after focal cerebral ischaemia in diabetic rats. J Cell Mol Med. 2021;25:10185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21:571–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Foley KE. Organoids: a better in vitro model. Nat Methods. 2017;14:559–62.

    Article  CAS  PubMed  Google Scholar 

  109. Sato T, Clevers H. SnapShot: growing organoids from stem cells. Cell. 2015;161:1700–e1.

    Article  CAS  PubMed  Google Scholar 

  110. Mansour AA, Goncalves JT, Bloyd CW, Li H, Fernandes S, Quang D, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36:432–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Daviaud N, Friedel RH, Zou H. Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex. eNeuro. 2018;5:ENEURO.0219–18.2018.

    Article  PubMed  Google Scholar 

  112. Wang Z, Wang SN, Xu TY, Hong C, Cheng MH, Zhu PX, et al. Cerebral organoids transplantation improves neurological motor function in rat brain injury. CNS Neurosci Ther. 2020;26:682–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang SN, Wang Z, Xu TY, Cheng MH, Li WL, Miao CY. Cerebral organoids repair ischemic stroke brain injury. Transl Stroke Res. 2020;11:983–1000.

    Article  PubMed  Google Scholar 

  114. Seandel M, Butler J, Lyden D, Rafii S. A catalytic role for proangiogenic marrow-derived cells in tumor neovascularization. Cancer Cell. 2008;13:181–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kokovay E, Li L, Cunningham LA. Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab. 2006;26:545–55.

    Article  CAS  PubMed  Google Scholar 

  116. Dalkara T, Alarcon-Martinez L, Yemisci M. Pericytes in ischemic stroke. Adv Exp Med Biol. 2019;1147:189–213.

    Article  CAS  PubMed  Google Scholar 

  117. Arimura K, Ago T, Kamouchi M, Nakamura K, Ishitsuka K, Kuroda J, et al. PDGF receptor beta signaling in pericytes following ischemic brain injury. Curr Neurovasc Res. 2012;9:1–9.

    Article  CAS  PubMed  Google Scholar 

  118. Greenberg DA, Jin K. From angiogenesis to neuropathology. Nature. 2005;438:954–9.

    Article  CAS  PubMed  Google Scholar 

  119. Dore-Duffy P, Wang X, Mehedi A, Kreipke CW, Rafols JA. Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol Res. 2007;29:395–403.

    Article  CAS  PubMed  Google Scholar 

  120. Hoffmann CJ, Harms U, Rex A, Szulzewsky F, Wolf SA, Grittner U, et al. Vascular signal transducer and activator of transcription-3 promotes angiogenesis and neuroplasticity long-term after stroke. Circulation. 2015;131:1772–82.

    Article  CAS  PubMed  Google Scholar 

  121. Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017;157:247–72.

    Article  CAS  PubMed  Google Scholar 

  122. Jolivel V, Bicker F, Biname F, Ploen R, Keller S, Gollan R, et al. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol. 2015;129:279–95.

    Article  PubMed  Google Scholar 

  123. Bisht K, Okojie KA, Sharma K, Lentferink DH, Sun YY, Chen HR, et al. Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice. Nat Commun. 2021;12:5289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tian Y, Zhu P, Liu S, Jin Z, Li D, Zhao H, et al. IL-4-polarized BV2 microglia cells promote angiogenesis by secreting exosomes. Adv Clin Exp Med. 2019;28:421–30.

    Article  PubMed  Google Scholar 

  125. Zhang L, Wei W, Ai X, Kilic E, Hermann DM, Venkataramani V, et al. Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-beta/Smad2/3 pathway. Cell Death Dis. 2021;12:1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ma YZ, Yang SL, He QY, Zhang DH, Chang JL. The role of immune cells in post-stroke angiogenesis and neuronal remodeling: the known and the unknown. Front Immunol. 2021;12:784098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  128. Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J Cell Commun Signal. 2016;10:347–54.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380:435–9.

    Article  CAS  PubMed  Google Scholar 

  130. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380:439–42.

    Article  CAS  PubMed  Google Scholar 

  131. Cobbs CS, Chen J, Greenberg DA, Graham SH. Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci Lett. 1998;249:79–82.

    Article  CAS  PubMed  Google Scholar 

  132. Dor Y, Porat R, Keshet E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol. 2001;280:C1367–74.

    Article  CAS  PubMed  Google Scholar 

  133. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002;64:993–8.

    Article  CAS  PubMed  Google Scholar 

  134. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451:1008–12.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang P, Lei X, Sun Y, Zhang H, Chang L, Li C, et al. Regenerative repair of Pifithrin-alpha in cerebral ischemia via VEGF dependent manner. Sci Rep. 2016;6:26295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Singh NK, Kundumani-Sridharan V, Rao GN. 12/15-Lipoxygenase gene knockout severely impairs ischemia-induced angiogenesis due to lack of Rac1 farnesylation. Blood. 2011;118:5701–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen L, Zhu YM, Li YN, Li PY, Wang D, Liu Y, et al. The 15-LO-1/15-HETE system promotes angiogenesis by upregulating VEGF in ischemic brains. Neurol Res. 2017;39:795–802.

    Article  CAS  PubMed  Google Scholar 

  138. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111:1843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kusaka N, Sugiu K, Tokunaga K, Katsumata A, Nishida A, Namba K, et al. Enhanced brain angiogenesis in chronic cerebral hypoperfusion after administration of plasmid human vascular endothelial growth factor in combination with indirect vasoreconstructive surgery. J Neurosurg. 2005;103:882–90.

    Article  CAS  PubMed  Google Scholar 

  140. Zechariah A, ElAli A, Doeppner TR, Jin F, Hasan MR, Helfrich I, et al. Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke. 2013;44:1690–7.

    Article  CAS  PubMed  Google Scholar 

  141. Zhu Y, Lee C, Shen F, Du R, Young WL, Yang GY. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke. 2005;36:1533–7.

    Article  CAS  PubMed  Google Scholar 

  142. Ling MF, Quan LL, Lai XM, Lang LM, Li F, Yang XH, et al. VEGFB promotes myoblasts proliferation and differentiation through VEGFR1-PI3K/Akt signaling pathway. Int J Mol Sci. 2021;22:13352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Huang JB, Hsu SP, Pan HY, Chen SD, Chen SF, Lin TK, et al. Peroxisome proliferator-activated receptor gamma coactivator 1alpha activates vascular endothelial growth factor that protects against neuronal cell death following status epilepticus through PI3K/AKT and MEK/ERK signaling. Int J Mol Sci. 2020;21:7247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Narasimhan P, Liu J, Song YS, Massengale JL, Chan PH. VEGF Stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke. 2009;40:1467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lyons MK, Anderson RE, Meyer FB. Basic fibroblast growth factor promotes in vivo cerebral angiogenesis in chronic forebrain ischemia. Brain Res. 1991;558:315–20.

    Article  CAS  PubMed  Google Scholar 

  146. Zou Y, Hu J, Huang W, Ye S, Han F, Du J, et al. Non-mitogenic fibroblast growth factor 1 enhanced angiogenesis following ischemic stroke by regulating the sphingosine-1-phosphate 1 pathway. Front Pharmacol. 2020;11:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Qian RZ, Yue F, Zhang GP, Hou LK, Wang XH, Jin HM. Roles of cyclooxygenase-2 in microvascular endothelial cell proliferation induced by basic fibroblast growth factor. Chin Med J (Engl). 2008;121:2599–603.

    Article  CAS  PubMed  Google Scholar 

  148. Pang Q, Zhang H, Chen Z, Wu Y, Bai M, Liu Y, et al. Role of caveolin-1/vascular endothelial growth factor pathway in basic fibroblast growth factor-induced angiogenesis and neurogenesis after treadmill training following focal cerebral ischemia in rats. Brain Res. 2017;1663:9–19.

    Article  CAS  PubMed  Google Scholar 

  149. Nakamura K, Arimura K, Nishimura A, Tachibana M, Yoshikawa Y, Makihara N, et al. Possible involvement of basic FGF in the upregulation of PDGFRbeta in pericytes after ischemic stroke. Brain Res. 2016;1630:98–108.

    Article  CAS  PubMed  Google Scholar 

  150. Fouda AY, Alhusban A, Ishrat T, Pillai B, Eldahshan W, Waller JL, et al. Brain-derived neurotrophic factor knockdown blocks the angiogenic and protective effects of angiotensin modulation after experimental stroke. Mol Neurobiol. 2017;54:661–70.

    Article  CAS  PubMed  Google Scholar 

  151. Shang J, Deguchi K, Ohta Y, Liu N, Zhang X, Tian F, et al. Strong neurogenesis, angiogenesis, synaptogenesis, and antifibrosis of hepatocyte growth factor in rats brain after transient middle cerebral artery occlusion. J Neurosci Res. 2011;89:86–95.

    Article  CAS  PubMed  Google Scholar 

  152. Gao B, Deng J, Zhang X, Sun H, Jia G, Li J, et al. Effects of mesencephalic astrocyte-derived neurotrophic factor on cerebral angiogenesis in a rat model of cerebral ischemia. Neurosci Lett. 2020;715:134657.

    Article  CAS  PubMed  Google Scholar 

  153. Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S, et al. A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke. 1997;28:564–73.

    Article  CAS  PubMed  Google Scholar 

  154. Sugiura S, Kitagawa K, Tanaka S, Todo K, Omura-Matsuoka E, Sasaki T, et al. Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke. 2005;36:859–64.

    Article  CAS  PubMed  Google Scholar 

  155. Krupinski J, Vodovotz Y, Li C, Slowik A, Beevers D, Flanders KC, et al. Inducible nitric oxide production and expression of transforming growth factor-beta1 in serum and CSF after cerebral ischaemic stroke in man. Nitric Oxide. 1998;2:442–53.

    Article  CAS  PubMed  Google Scholar 

  156. Krupinski J, Kumar P, Kumar S, Kaluza J. Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke. 1996;27:852–7.

    Article  CAS  PubMed  Google Scholar 

  157. Ma J, Zhang L, Niu T, Ai C, Jia G, Jin X, et al. Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion. Brain Res Bull. 2018;139:38–47.

    Article  CAS  PubMed  Google Scholar 

  158. Zhao HT, Zhang YH, Zhang YH, Shen Y, Zhang YD, Bi FF, et al. NGF/FAK signal pathway is implicated in angiogenesis after acute cerebral ischemia in rats. Neurosci Lett. 2018;672:96–102.

    Article  CAS  PubMed  Google Scholar 

  159. Li XQ, Li FM, Ling L, Li CQ, Zhong YL. Intranasal administration of nerve growth factor promotes angiogenesis via activation of PI3K/Akt signaling following cerebral infarction in rats. Am J Transl Res. 2018;10:3481–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hou Y, Ryu CH, Jun JA, Kim SM, Jeong CH, Jeun SS. IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell Biol Int. 2014;38:1050–9.

    CAS  PubMed  Google Scholar 

  161. Gertz K, Kronenberg G, Kalin RE, Baldinger T, Werner C, Balkaya M, et al. Essential role of interleukin-6 in post-stroke angiogenesis. Brain. 2012;135:1964–80.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Salmeron K, Aihara T, Redondo-Castro E, Pinteaux E, Bix G. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury. J Neurochem. 2016;136:573–80.

    Article  CAS  PubMed  Google Scholar 

  163. Huang H, Huang QJ, Wang FX, Milner R, Li LX. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of alpha 5 beta 1 and alpha 5 beta 1 integrins. J Neuroinflammation. 2016;13:227.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Wesley UV, Vemuganti R, Ayvaci ER, Dempsey RJ. Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling. Brain Res. 2013;1496:1–9.

    Article  CAS  PubMed  Google Scholar 

  165. Cheng YH, Jiang YF, Qin C, Shang K, Yuan Y, Wei XJ, et al. Galectin-1 contributes to vascular remodeling and blood flow recovery after cerebral ischemia in mice. Transl Stroke Res. 2022;13:160–70.

    Article  CAS  PubMed  Google Scholar 

  166. Shyu WC, Lin SZ, Yen PS, Su CY, Chen DC, Wang HJ, et al. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther. 2008;324:834–49.

    Article  CAS  PubMed  Google Scholar 

  167. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110:1847–54.

    Article  CAS  PubMed  Google Scholar 

  168. Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res. 2005;1058:120–8.

    Article  CAS  PubMed  Google Scholar 

  169. Yu X, Peng Y, Liang H, Fu K, Zhao ZH, Xie C, et al. TSLP/TSLPR promote angiogenesis following ischemic stroke via activation of the PI3K/AKT pathway. Mol Med Rep. 2018;17:3411–7.

    CAS  PubMed  Google Scholar 

  170. Ding Q, Liao SJ, Yu J. Axon guidance factor netrin-1 and its receptors regulate angiogenesis after cerebral ischemia. Neurosci Bull. 2014;30:683–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lu HY, Wang YT, He XS, Yuan FL, Lin XJ, Xie BH, et al. Netrin-1 hyperexpression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia. Stroke. 2012;43:838–43.

    Article  CAS  PubMed  Google Scholar 

  172. Hoang S, Liauw J, Choi M, Choi M, Guzman RG, Steinberg GK. Netrin-4 enhances angiogenesis and neurologic outcome after cerebral ischemia. J Cereb Blood Flow Metab. 2009;29:385–97.

    Article  CAS  PubMed  Google Scholar 

  173. Yan YP, Lang BT, Vemuganti R, Dempsey RJ. Galectin-3 mediates post-ischemic tissue remodeling. Brain Res. 2009;1288:116–24.

    Article  CAS  PubMed  Google Scholar 

  174. Wesley UV, Sutton IC, Cunningham K, Jaeger JW, Phan AQ, Hatcher JF, et al. Galectin-3 protects against ischemic stroke by promoting neuro-angiogenesis via apoptosis inhibition and Akt/Caspase regulation. J Cereb Blood Flow Metab. 2021;41:857–73.

    Article  CAS  PubMed  Google Scholar 

  175. Li YN, Huang J, He XS, Tang GH, Tang YH, Liu YQ, et al. Postacute stromal cell-derived factor-1 alpha expression promotes neurovascular recovery in ischemic mice. Stroke. 2014;45:1822–9.

    Article  CAS  PubMed  Google Scholar 

  176. Zhang ZG, Zhang L, Croll SD, Chopp M. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience. 2002;113:683–7.

    Article  CAS  PubMed  Google Scholar 

  177. Gridley T. Notch signaling in vascular development and physiology. Development. 2007;134:2709–18.

    Article  CAS  PubMed  Google Scholar 

  178. Fagiani E, Christofori G. Angiopoietins in angiogenesis. Cancer Lett. 2013;328:18–26.

    Article  CAS  PubMed  Google Scholar 

  179. Meng Z, Li M, He Q, Jiang S, Zhang X, Xiao J, et al. Ectopic expression of human angiopoietin-1 promotes functional recovery and neurogenesis after focal cerebral ischemia. Neuroscience. 2014;267:135–46.

    Article  CAS  PubMed  Google Scholar 

  180. Ardelt AA, McCullough LD, Korach KS, Wang MM, Munzenmaier DH, Hurn PD. Estradiol regulates angiopoietin-1 mRNA expression through estrogen receptor-alpha in a rodent experimental stroke model. Stroke. 2005;36:337–41.

    Article  CAS  PubMed  Google Scholar 

  181. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.

    Article  CAS  PubMed  Google Scholar 

  182. Lai DM, Li H, Lee CC, Tzeng YS, Hsieh YH, Hsu WM, et al. Angiopoietin-like protein 1 decreases blood brain barrier damage and edema following focal cerebral ischemia in mice. Neurochem Int. 2008;52:470–7.

    Article  CAS  PubMed  Google Scholar 

  183. Bouleti C, Mathivet T, Coqueran B, Serfaty JM, Lesage M, Berland E, et al. Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke. Eur Heart J. 2013;34:3657–68.

    Article  CAS  PubMed  Google Scholar 

  184. Tang Y, Zhang Y, Zheng M, Chen J, Chen H, Liu N. Effects of treadmill exercise on cerebral angiogenesis and MT1-MMP expression after cerebral ischemia in rats. Brain Behav. 2018;8:e01079.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Hou H, Zhang G, Wang H, Gong H, Wang C, Zhang X. High matrix metalloproteinase-9 expression induces angiogenesis and basement membrane degradation in stroke-prone spontaneously hypertensive rats after cerebral infarction. Neural Regen Res. 2014;9:1154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yang Y, Thompson JF, Taheri S, Salayandia VM, McAvoy TA, Hill JW, et al. Early inhibition of MMP activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery. J Cereb Blood Flow Metab. 2013;33:1104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ren C, Yao Y, Han R, Huang Q, Li H, Wang B, et al. Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch1 signaling activation. Exp Neurol. 2018;304:30–40.

    Article  CAS  PubMed  Google Scholar 

  188. Wang P, Guan YF, Li WL, Lu GC, Liu JM, Miao CY. Nicotinamide phosphoribosyltransferase facilitates post-stroke angiogenesis. CNS Neurosci Ther. 2015;21:475–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang P, Du H, Zhou CC, Song J, Liu X, Cao X, et al. Intracellular NAMPT-NAD+-SIRT1 cascade improves post-ischaemic vascular repair by modulating Notch signalling in endothelial progenitors. Cardiovasc Res. 2014;104:477–88.

    Article  CAS  PubMed  Google Scholar 

  190. Bi JJ, Yi L. Effects of integrins and integrin alphavbeta3 inhibitor on angiogenesis in cerebral ischemic stroke. J Huazhong Univ Sci Technol Med Sci. 2014;34:299–305.

    Article  CAS  Google Scholar 

  191. Huang Q, Chen B, Wang F, Huang H, Milner R, Li L. The temporal expression patterns of fibronectin and its receptors-alpha5beta1 and alphavbeta3 integrins on blood vessels after cerebral ischemia. Restor Neurol Neurosci. 2015;33:493–507.

    CAS  PubMed  Google Scholar 

  192. Huang H, Huang Q, Wang F, Milner R, Li L. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of alpha5beta1 and alphaVbeta3 integrins. J Neuroinflammation. 2016;13:227.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Chen XM, Chen HS, Xu MJ, Shen JG. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol Sin. 2013;34:67–77.

    Article  CAS  PubMed  Google Scholar 

  194. Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, et al. NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflammation. 2022;19:184.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Matsuda T, Abe T, Wu JL, Fujiki M, Kobayashi H. Hypoxia-inducible factor-1alpha DNA induced angiogenesis in a rat cerebral ischemia model. Neurol Res. 2005;27:503–8.

    Article  CAS  PubMed  Google Scholar 

  196. Miyashita R, Chen L, Oshiro H, Uchino H, Shibasaki F. Int6 silencing causes induction of angiogenic factors in neuronal cells via accumulation of hypoxia-inducible factor 2alpha and decreases brain damage in rats. Neurosci Lett. 2012;528:83–8.

    Article  CAS  PubMed  Google Scholar 

  197. Gu N, Dong Y, Tian Y, Di Z, Liu Z, Chang M, et al. Anti-apoptotic and angiogenic effects of intelectin-1 in rat cerebral ischemia. Brain Res Bull. 2017;130:27–35.

    Article  CAS  PubMed  Google Scholar 

  198. Shi S, Tang M, Li H, Ding H, Lu Y, Gao L, et al. X-box binding protein l splicing attenuates brain microvascular endothelial cell damage induced by oxygen-glucose deprivation through the activation of phosphoinositide 3-kinase/protein kinase B, extracellular signal-regulated kinases, and hypoxia-inducible factor-1alpha/vascular endothelial growth factor signaling pathways. J Cell Physiol. 2019;234:9316–27.

    Article  CAS  PubMed  Google Scholar 

  199. Xue L, Huang J, Zhang T, Wang X, Fu J, Geng Z, et al. PTEN inhibition enhances angiogenesis in an in vitro model of ischemic injury by promoting Akt phosphorylation and subsequent hypoxia inducible factor-1alpha upregulation. Metab Brain Dis. 2018;33:1679–88.

    Article  CAS  PubMed  Google Scholar 

  200. Dong B, Zhang Z, Xie K, Yang Y, Shi Y, Wang C, et al. Hemopexin promotes angiogenesis via up-regulating HO-1 in rats after cerebral ischemia-reperfusion injury. BMC Anesthesiol. 2018;18:2.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Chen X, Zhang X, Chen T, Jiang X, Wang X, Lei H, et al. Inhibition of immunoproteasome promotes angiogenesis via enhancing hypoxia-inducible factor-1alpha abundance in rats following focal cerebral ischaemia. Brain Behav Immun. 2018;73:167–79.

    Article  CAS  PubMed  Google Scholar 

  202. Wang P, Zhao Y, Li Y, Wu J, Yu S, Zhu J, et al. Sestrin2 overexpression attenuates focal cerebral ischemic injury in rat by increasing Nrf2/HO-1 pathway-mediated angiogenesis. Neuroscience. 2019;410:140–9.

    Article  CAS  PubMed  Google Scholar 

  203. Lv MH, Li S, Jiang YJ, Zhang W. The Sphkl/SlP pathway regulates angiogenesis via NOS/NO synthesis following cerebral ischemia-reperfusion. CNS Neurosci Ther. 2020;26:538–48.

    Article  CAS  PubMed  Google Scholar 

  204. Fan G, Li Q, Qian J. C1q contributes to post-stroke angiogenesis via LAIR1-HIF1alpha-VEGF pathway. Front Biosci (Landmark Ed). 2019;24:1050–9.

    Article  CAS  PubMed  Google Scholar 

  205. Li Y, Wu J, Yu S, Zhu J, Zhou Y, Wang P, et al. Sestrin2 promotes angiogenesis to alleviate brain injury by activating Nrf2 through regulating the interaction between p62 and Keap1 following photothrombotic stroke in rats. Brain Res. 2020;1745:146948.

    Article  CAS  PubMed  Google Scholar 

  206. Li Y, Lu Z, Keogh CL, Yu SP, Wei L. Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab. 2007;27:1043–54.

    Article  CAS  PubMed  Google Scholar 

  207. Chen GH, Li XL, Deng YQ, Zhou FM, Zou WQ, Jiang WX, et al. The molecular mechanism of EPO regulates the angiogenesis after cerebral ischemia through AMPK-KLF2 signaling pathway. Crit Rev Eukar Gene. 2019;29:105–12.

    Article  Google Scholar 

  208. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab. 1999;19:643–51.

    Article  CAS  PubMed  Google Scholar 

  209. Zhang R, Wang L, Zhang L, Chen J, Zhu Z, Zhang Z, et al. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res. 2003;92:308–13.

    Article  CAS  PubMed  Google Scholar 

  210. Jang H, Oh MY, Kim YJ, Choi IY, Yang HS, Ryu WS, et al. Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J Neurosci Res. 2014;92:1520–8.

    Article  CAS  PubMed  Google Scholar 

  211. Hamel D, Sanchez M, Duhamel F, Roy O, Honore JC, Noueihed B, et al. G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler Thromb Vasc Biol. 2014;34:285–93.

    Article  CAS  PubMed  Google Scholar 

  212. Chen DD, Wei L, Liu ZR, Yang JJ, Gu XH, Wei ZZ, et al. Pyruvate kinase M2 increases angiogenesis, neurogenesis, and functional recovery mediated by upregulation of stat3 and focal adhesion kinase activities after ischemic stroke in adult mice (vol 15, pg 770, 2018). Neurotherapeutics. 2018;15:836.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Rubanyi GM, Johns A, Kauser K. Effect of estrogen on endothelial function and angiogenesis. Vascul Pharmacol. 2002;38:89–98.

    Article  CAS  PubMed  Google Scholar 

  214. Lu RY, Luo DF, Xiao SH, Yang LH, Zhao J, Ji EN, et al. Kallikrein gene transfer induces angiogenesis and further improves regional cerebral blood flow in the early period after cerebral ischemia/reperfusion in rats. CNS Neurosci Ther. 2012;18:395–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chao J, Chao L. Experimental therapy with tissue kallikrein against cerebral ischemia. Front Biosci. 2006;11:1323–7.

    Article  CAS  PubMed  Google Scholar 

  216. Xia CF, Yin H, Yao YY, Borlongan CV, Chao L, Chao J. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther. 2006;17:206–19.

    Article  CAS  PubMed  Google Scholar 

  217. Tian HL, Chen H, Cui YH, Xu T, Zhou LF. Increased protein and mRNA expression of endostatin in the ischemic brain tissue of rabbits after middle cerebral artery occlusion. Neurosci Bull. 2007;23:35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Avraham Y, Davidi N, Lassri V, Vorobiev L, Kabesa M, Dayan M, et al. Leptin induces neuroprotection neurogenesis and angiogenesis after stroke. Curr Neurovasc Res. 2011;8:313–22.

    Article  CAS  PubMed  Google Scholar 

  219. Meng HM, Song YJ, Zhu JY, Liu Q, Lu PT, Ye N, et al. LRG1 promotes angiogenesis through upregulating the TGF-beta 1 pathway in ischemic rat brain. Mol Med Rep. 2016;14:5535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Fan Y, Zhu W, Yang M, Zhu Y, Shen F, Hao Q, et al. Del-1 gene transfer induces cerebral angiogenesis in mice. Brain Res. 2008;1219:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lin TN, Kim GM, Chen JJ, Cheung WM, He YY, Hsu CY. Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion. Stroke. 2003;34:177–86.

    Article  CAS  PubMed  Google Scholar 

  222. Zan L, Wu H, Jiang J, Zhao S, Song Y, Teng G, et al. Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema. Neurochem Int. 2011;58:872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Shen L, Miao J, Yuan F, Zhao Y, Tang Y, Wang Y, et al. Overexpression of adiponectin promotes focal angiogenesis in the mouse brain following middle cerebral artery occlusion. Gene Ther. 2013;20:93–101.

    Article  CAS  PubMed  Google Scholar 

  224. Leonard MG, Gulati A. Endothelin B receptor agonist, IRL-1620, enhances angiogenesis and neurogenesis following cerebral ischemia in rats. Brain Res. 2013;1528:28–41.

    Article  CAS  PubMed  Google Scholar 

  225. He QW, Xia YP, Chen SC, Wang Y, Huang M, Huang Y, et al. Astrocyte-derived sonic hedgehog contributes to angiogenesis in brain microvascular endothelial cells via RhoA/ROCK pathway after oxygen-glucose deprivation. Mol Neurobiol. 2013;47:976–87.

    Article  CAS  PubMed  Google Scholar 

  226. Huang SS, Cheng H, Tang CM, Nien MW, Huang YS, Lee IH, et al. Anti-oxidative, anti-apoptotic, and pro-angiogenic effects mediate functional improvement by sonic hedgehog against focal cerebral ischemia in rats. Exp Neurol. 2013;247:680–8.

    Article  CAS  PubMed  Google Scholar 

  227. Chen SC, Huang M, He QW, Zhang Y, Opoku EN, Yang H, et al. Administration of Sonic Hedgehog protein induces angiogenesis and Has therapeutic effects after stroke in rats. Neuroscience. 2017;352:285–95.

    Article  CAS  PubMed  Google Scholar 

  228. Yang J, Shi QD, Song TB, Feng GF, Zang WJ, Zong CH, et al. Vasoactive intestinal peptide increases VEGF expression to promote proliferation of brain vascular endothelial cells via the cAMP/PKA pathway after ischemic insult in vitro. Peptides. 2013;42:105–11.

    Article  CAS  PubMed  Google Scholar 

  229. Loh KP, Ng G, Yu CY, Fhu CK, Yu D, Vennekens R, et al. TRPM4 inhibition promotes angiogenesis after ischemic stroke. Pflug Arch. 2014;466:563–76.

    Article  CAS  Google Scholar 

  230. Chen CK, Hsu PY, Wang TM, Miao ZF, Lin RT, Juo SHH. TRPV4 activation contributes functional recovery from ischemic stroke via angiogenesis and neurogenesis. Mol Neurobiol. 2018;55:4127–35.

    CAS  PubMed  Google Scholar 

  231. Rodriguez-Grande B, Varghese L, Molina-Holgado F, Rajkovic O, Garlanda C, Denes A, et al. Pentraxin 3 mediates neurogenesis and angiogenesis after cerebral ischaemia. J Neuroinflammation. 2015;12:15.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Ling L, Zhang S, Ji Z, Huang H, Yao G, Wang M, et al. Therapeutic effects of lipo-prostaglandin E1 on angiogenesis and neurogenesis after ischemic stroke in rats. Int J Neurosci. 2016;126:469–77.

    Article  CAS  PubMed  Google Scholar 

  233. Wang Y, Zhang R, Xing X, Guo J, Xie F, Zhang G, et al. Repulsive guidance molecule a suppresses angiogenesis after ischemia/reperfusion injury of middle cerebral artery occlusion in rats. Neurosci Lett. 2018;662:318–23.

    Article  CAS  PubMed  Google Scholar 

  234. Deng G, Qiu Z, Li D, Fang Y, Zhang S. Delayed administration of guanosine improves longterm functional recovery and enhances neurogenesis and angiogenesis in a mouse model of photothrombotic stroke. Mol Med Rep. 2017;15:3999–4004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhou Z, Lu C, Meng S, Dun L, Yin N, An H, et al. Silencing of PTGS2 exerts promoting effects on angiogenesis endothelial progenitor cells in mice with ischemic stroke via repression of the NF-kappaB signaling pathway. J Cell Physiol. 2019;234:23448–60.

    Article  CAS  PubMed  Google Scholar 

  236. Chen Y, Zhang X, He J, Xie Y, Yang Y. Delayed administration of the glucagon-like peptide 1 analog liraglutide promoting angiogenesis after focal cerebral ischemia in mice. J Stroke Cerebrovasc Dis. 2018;27:1318–25.

    Article  PubMed  Google Scholar 

  237. Xing S, Pan N, Xu W, Zhang J, Li J, Dang C, et al. EphrinB2 activation enhances angiogenesis, reduces amyloid-beta deposits and secondary damage in thalamus at the early stage after cortical infarction in hypertensive rats. J Cereb Blood Flow Metab. 2019;39:1776–89.

    Article  CAS  PubMed  Google Scholar 

  238. Malik AR, Lips J, Gorniak-Walas M, Broekaart DWM, Asaro A, Kuffner MTC, et al. SorCS2 facilitates release of endostatin from astrocytes and controls post-stroke angiogenesis. Glia. 2020;68:1304–16.

    Article  PubMed  Google Scholar 

  239. Jian R, Yang M, Xu F. Lentiviral-mediated silencing of mast cell-expressed membrane protein 1 promotes angiogenesis of rats with cerebral ischemic stroke. J Cell Biochem. 2019;120:16786–97.

    Article  CAS  PubMed  Google Scholar 

  240. Wang LH, Zhang GL, Liu XY, Peng A, Ren HY, Huang SH, et al. CELSR1 promotes neuroprotection in cerebral ischemic injury mainly through the Wnt/PKC signaling pathway. Int J Mol Sci. 2020;21:1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kim Y, Lee S, Zhang H, Lee S, Kim H, Kim Y, et al. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J Neuroinflammation. 2020;17:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Huang CY, Dai CF, Gong K, Zuo HC, Chu HL. Apelin-13 protects neurovascular unit against ischemic injuries through the effects of vascular endothelial growth factor. Neuropeptides. 2016;60:67–74.

    Article  CAS  PubMed  Google Scholar 

  243. Wenzel J, Spyropoulos D, Assmann JC, Khan MA, Stolting I, Lembrich B, et al. Endogenous THBD (Thrombomodulin) Mediates Angiogenesis in the Ischemic Brain-Brief Report. Arterioscler Thromb Vasc Biol. 2020;40:2837–44.

    Article  CAS  PubMed  Google Scholar 

  244. Xiao PY, Gu JM, Xu W, Niu XY, Zhang J, Li JJ, et al. RTN4/Nogo-A-S1PR2 negatively regulates angiogenesis and secondary neural repair through enhancing vascular autophagy in the thalamus after cerebral cortical infarction. Autophagy. 2022;18:2711–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Chaudhari P, Madaan A, Rivera JC, Charfi I, Habelrih T, Hou X, et al. Neuronal GPR81 regulates developmental brain angiogenesis and promotes brain recovery after a hypoxic ischemic insult. J Cereb Blood Flow Metab. 2022;42:1294–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Chen DY, Sun NH, Lu YP, Hong LJ, Cui TT, Wang CK, et al. GPR124 facilitates pericyte polarization and migration by regulating the formation of filopodia during ischemic injury. Theranostics. 2019;9:5937–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Fan LS, Chen YC, Liao RJ, Zhao YY, Zhang XN, Chen Z, et al. Antagonism of histamine H3 receptor promotes angiogenesis following focal cerebral ischemia. Acta Pharmacol Sin. 2022;43:2807–16.

    Article  CAS  PubMed  Google Scholar 

  248. Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol Sin. 2018;39:1110–9.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Yin KJ, Hamblin M, Chen YE. Non-coding RNAs in cerebral endothelial pathophysiology: Emerging roles in stroke. Neurochem Int. 2014;77:9–16.

    Article  CAS  PubMed  Google Scholar 

  250. Heydari E, Alishahi M, Ghaedrahmati F, Winlow W, Khoshnam SE, Anbiyaiee A. The role of non-coding RNAs in neuroprotection and angiogenesis following ischemic stroke. Metab Brain Dis. 2020;35:31–43.

    Article  CAS  PubMed  Google Scholar 

  251. Stępień E, Costa MC, Kurc S, Drożdż A, Cortez-Dias N, Enguita FJ. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin. 2018;39:1085–99.

    Article  Google Scholar 

  252. Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 2005;28:202–8.

    Article  CAS  PubMed  Google Scholar 

  253. Gallego I, Villate-Beitia I, Saenz-del-Burgo L, Puras G, Pedraz JL. Therapeutic opportunities and delivery strategies for brain revascularization in stroke, neurodegeneration, and aging. Pharmacol Rev. 2022;74:439–61.

    Article  CAS  PubMed  Google Scholar 

  254. Biswas S, Cottarelli A, Agalliu D. Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development. 2020;147:dev182279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Shah AA, Kamal MA, Akhtar S. Tumor angiogenesis and VEGFR-2: mechanism, pathways and current biological therapeutic interventions. Curr Drug Metab. 2021;22:50–9.

    CAS  PubMed  Google Scholar 

  256. Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif. 2021;54:e13009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Wang L, Lin Z, Shao B, Zhuge Q, Jin K. Therapeutic applications of bone marrow-derived stem cells in ischemic stroke. Neurol Res. 2013;35:470–8.

    Article  CAS  PubMed  Google Scholar 

  258. Mello TG, Rosado-de-Castro PH, Campos RMP, Vasques JF, Rangel-Junior WS, Mattos R, et al. Intravenous human umbilical cord-derived mesenchymal stromal cell administration in models of moderate and severe intracerebral hemorrhage. Stem Cells Dev. 2020;29:586–98.

    Article  CAS  PubMed  Google Scholar 

  259. Du SW, Guan J, Mao GS, Liu Y, Ma SH, Bao XJ, et al. Intra-arterial delivery of human bone marrow mesenchymal stem cells is a safe and effective way to treat cerebral ischemia in rats. Cell Transplant. 2014;23:S73–S82.

    Article  PubMed  Google Scholar 

  260. Chau MJ, Deveau TC, Gu X, Kim YS, Xu Y, Yu SP, et al. Delayed and repeated intranasal delivery of bone marrow stromal cells increases regeneration and functional recovery after ischemic stroke in mice. BMC Neurosci. 2018;19:20.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Jendelova P, Kubinova S, Sandvig I, Erceg S, Sandvig A, Sykova E. Current developments in cell- and biomaterial-based approaches for stroke repair. Expert Opin Biol Ther. 2016;16:43–56.

    Article  CAS  PubMed  Google Scholar 

  262. Erning K, Segura T. Materials to promote recovery after stroke. Curr Opin Biomed Eng. 2020;14:9–17.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Zhong J, Chan A, Morad L, Kornblum HI, Fan G, Carmichael ST. Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil Neural Repair. 2010;24:636–44.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Wang SN, Wang Z, Wang XY, Zhang XP, Xu TY, Miao CY. Humanized cerebral organoids-based ischemic stroke model for discovering of potential anti-stroke agents. Acta Pharmacol Sin. 2022;44:513–23.

    Article  PubMed  Google Scholar 

  265. Lou YL, Guo F, Liu F, Gao FL, Zhang PQ, Niu X, et al. miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 2012;370:45–51.

    Article  CAS  PubMed  Google Scholar 

  266. Li LJ, Huang Q, Zhang N, Wang GB, Liu YH. miR-376b-5p regulates angiogenesis in cerebral ischemia. Mol Med Rep. 2014;10:527–35.

    Article  CAS  PubMed  Google Scholar 

  267. Li YA, Mao L, Gao Y, Baral S, Zhou YF, Hu B. MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci Rep. 2015;5:13316. https://doi.org/10.1038/srep13316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Feng NP, Wang ZF, Zhang Z, He XJ, Wang CL, Zhang LM. miR-487b promotes human umbilical vein endothelial cell proliferation, migration, invasion and tube formation through regulating THBS1. Neurosci Lett. 2015;591:1–7.

    Article  CAS  PubMed  Google Scholar 

  269. Feng J, Huang T, Huang Q, Chen H, Li Y, He W, et al. Proangiogenic microRNA296 upregulates vascular endothelial growth factor and downregulates Notch1 following cerebral ischemic injury. Mol Med Rep. 2015;12:8141–7.

    Article  CAS  PubMed  Google Scholar 

  270. Meng YC, Ding ZY, Wang HQ, Ning LP, Wang C. Effect of microRNA-155 on angiogenesis after cerebral infarction of rats through AT1R/VEGFR2 pathway. Asian Pac J Trop Med. 2015;8:810–6.

    Article  Google Scholar 

  271. Liu J, Li Q, Zhang KS, Hu B, Niu X, Zhou SM, et al. Downregulation of the long non-coding RNA Meg3 promotes angiogenesis after ischemic brain injury by activating Notch signaling. Mol Neurobiol. 2017;54:8179–90.

    Article  CAS  PubMed  Google Scholar 

  272. Zhan RY, Xu KL, Pan JW, Xu QS, Xu SJ, Shen J. Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis. Biochem Biophys Res Commun. 2017;490:700–6.

    Article  CAS  PubMed  Google Scholar 

  273. Sun J, Tao S, Liu L, Guo D, Xia Z, Huang M. miR1405p regulates angiogenesis following ischemic stroke by targeting VEGFA. Mol Med Rep. 2016;13:4499–505.

    Article  CAS  PubMed  Google Scholar 

  274. He QW, Li Q, Jin HJ, Zhi F, Suraj B, Zhu YY, et al. MiR-150 regulates poststroke cerebral angiogenesis via vascular endothelial growth factor in rats. CNS Neurosci Ther. 2016;22:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Li Q, He Q, Baral S, Mao L, Li Y, Jin H, et al. MicroRNA-493 regulates angiogenesis in a rat model of ischemic stroke by targeting MIF. FEBS J. 2016;283:1720–33.

    Article  CAS  PubMed  Google Scholar 

  276. Li L, Wang M, Mei Z, Cao W, Yang Y, Wang Y, et al. lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1alpha by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother. 2017;96:165–72.

    Article  CAS  PubMed  Google Scholar 

  277. Zhao WJ, Zhang HF, Su JY. Downregulation of microRNA-195 promotes angiogenesis induced by cerebral infarction via targeting VEGFA. Mol Med Rep. 2017;16:5434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Su ZF, Sun ZW, Zhang Y, Wang S, Yu QG, Wu ZB. Regulatory effects of miR-146a/b on the function of endothelial progenitor cells in acute ischemic stroke in mice. Kaohsiung J Med Sci. 2017;33:369–78.

    Article  PubMed  Google Scholar 

  279. Long FQ, Su QJ, Zhou JX, Wang DS, Li PX, Zeng CS, et al. LncRNA SNHG12 ameliorates brain microvascular endothelial cell injury by targeting miR-199a. Neural Regen Res. 2018;13:1919–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Zhao M, Wang J, Xi X, Tan N, Zhang L. SNHG12 promotes angiogenesis following ischemic stroke via regulating miR-150/VEGF pathway. Neuroscience. 2018;390:231–40.

    Article  CAS  PubMed  Google Scholar 

  281. Shan CY, Ma YS. MicroRNA-126/stromal cell-derived factor 1/C-X-C chemokine receptor type 7 signaling pathway promotes post-stroke angiogenesis of endothelial progenitor cell transplantation. Mol Med Rep. 2018;17:5300–5.

    CAS  PubMed  Google Scholar 

  282. Qu M, Pan J, Wang L, Zhou P, Song Y, Wang S, et al. MicroRNA-126 regulates angiogenesis and neurogenesis in a mouse model of focal cerebral ischemia. Mol Ther Nucleic Acids. 2019;16:15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Che FL, Du HS, Zhang WD, Cheng Z, Tong YN. MicroRNA-132 modifies angiogenesis in patients with ischemic cerebrovascular disease by suppressing the NF-kappa B and VEGF pathway. Mol Med Rep. 2018;17:2724–30.

    CAS  PubMed  Google Scholar 

  284. Meng ZY, Kang HL, Duan W, Zheng J, Li QN, Zhou ZJ. MicroRNA-210 Promotes accumulation of neural precursor cells around ischemic foci after cerebral ischemia by regulating the SOCS1-STAT3-VEGF-C pathway. J Am Heart Assoc. 2018;7:e005052.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J. MiR-377 regulates inflammation and angiogenesis in rats after cerebral ischemic injury. J Cell Biochem. 2018;119:327–37.

    Article  CAS  PubMed  Google Scholar 

  286. Liu D, Tang ZY, Hu ZJ, Li WW, Yuan WN. MiR-940 regulates angiogenesis after cerebral infarction through VEGF. Eur Rev Med Pharmacol Sci. 2018;22:7899–907.

    CAS  PubMed  Google Scholar 

  287. Liang Z, Chi YJ, Lin GQ, Luo SH, Jiang QY, Chen YK. MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. Eur Rev Med Pharmacol Sci. 2018;22:3485–92.

    CAS  PubMed  Google Scholar 

  288. Yuan Y, Zhang Z, Wang Z, Liu J. MiRNA-27b regulates angiogenesis by targeting AMPK in mouse ischemic stroke model. Neuroscience. 2019;398:12–22.

    Article  CAS  PubMed  Google Scholar 

  289. Wang ZF, Wang RH, Wang K, Liu XZ. Upregulated long noncoding RNA Snhg1 promotes the angiogenesis of brain microvascular endothelial cells after oxygen-glucose deprivation treatment by targeting miR-199a. Can J Physiol Pharmacol. 2018;96:909–15.

    Article  CAS  PubMed  Google Scholar 

  290. Shi FP, Wang XH, Zhang HX, Shang MM, Liu XX, Sun HM, et al. MiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF). Iran J Basic Med Sci. 2018;21:318–24.

    PubMed  PubMed Central  Google Scholar 

  291. Wang C, Qu Y, Suo R, Zhu Y. Long non-coding RNA MALAT1 regulates angiogenesis following oxygen-glucose deprivation/reoxygenation. J Cell Mol Med. 2019;23:2970–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Deng WJ, Fan CH, Shen RL, Wu YZ, Du R, Teng JF. Long noncoding MIAT acting as a ceRNA to sponge microRNA-204-5p to participate in cerebral microvascular endothelial cell injury after cerebral ischemia through regulating HMGB1. J Cell Physiol. 2020;235:4571–86.

    Article  CAS  PubMed  Google Scholar 

  293. Zhou ZW, Zheng LJ, Ren X, Li AP, Zhou WS. LncRNA NEAT1 facilitates survival and angiogenesis in oxygen-glucose deprivation (OGD)-induced brain microvascular endothelial cells (BMECs) via targeting miR-377 and upregulating SIRT1, VEGFA, and BCL-XL. Brain Res. 2019;1707:90–8.

    Article  CAS  PubMed  Google Scholar 

  294. Fan J, Xu W, Nan S, Chang M, Zhang Y. MicroRNA-384-5p promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke through the delta-likeligand 4-mediated notch signaling pathway. Cerebrovasc Dis. 2020;49:39–54.

    Article  CAS  PubMed  Google Scholar 

  295. Wang BX, Xu JJ, Hu J, Hu ML, Huang JM, Zhu XD. Effects of miR-153 on angiogenesis in MCAO rats through Shh signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23:732–9.

    PubMed  Google Scholar 

  296. Du K, Zhao C, Wang L, Wang Y, Zhang KZ, Shen XY, et al. MiR-191 inhibit angiogenesis after acute ischemic stroke targeting VEZF1. Aging (Albany NY). 2019;11:2762–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Wu Z, Liang Y, Yu S. Downregulation of microRNA-103a reduces microvascular endothelial cell injury in a rat model of cerebral ischemia by targeting AXIN2. J Cell Physiol. 2020;235:4720–33.

    Article  CAS  PubMed  Google Scholar 

  298. Deng WJ, Fan CH, Zhao YN, Mao YW, Li JJ, Zhang YG, et al. MicroRNA-130a regulates neurological deficit and angiogenesis in rats with ischaemic stroke by targeting XIAP. J Cell Mol Med. 2020;24:10987–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Sui SH, Sun L, Zhang WJ, Li JM, Han JC, Zheng JP, et al. LncRNA MEG8 attenuates cerebral ischemia after ischemic stroke through targeting miR-130a-5p/VEGFA signaling. Cell Mol Neurobiol. 2021;41:1311–24.

    Article  CAS  PubMed  Google Scholar 

  300. Peng H, Yang H, Xiang X, Li S. MuicroRNA-221 participates in cerebral ischemic stroke by modulating endothelial cell function by regulating the PTEN/PI3K/AKT pathway. Exp Ther Med. 2020;19:443–50.

    CAS  PubMed  Google Scholar 

  301. Sun P, Zhang K, Hassan SH, Zhang X, Tang X, Pu H, et al. Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res. 2020;126:1040–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Xie K, Cai Y, Yang P, Du F, Wu K. Upregulating microRNA-874-3p inhibits CXCL12 expression to promote angiogenesis and suppress inflammatory response in ischemic stroke. Am J Physiol Cell Physiol. 2020;319:C579–C88.

    Article  CAS  PubMed  Google Scholar 

  303. Li YS, Bi W, Han B, Yuan T, Shi L, Liu Y, et al. MiR-203 Targets to the 3’-UTR of SLUG to suppress cerebral infarction-induced endothelial cell growth and motility. Evid-Based Compl Alt Med. 2021;2021:5597567.

    Google Scholar 

  304. Yu G, Sun W, Wang W, Le C, Liang D, Shuai L. Overexpression of microRNA-202-3p in bone marrow mesenchymal stem cells improves cerebral ischemia-reperfusion injury by promoting angiogenesis and inhibiting inflammation. Aging (Albany NY). 2021;13:11877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Wu Y, Yang S, Zheng Z, Pan H, Jiang Y, Bai X, et al. MiR-191-5p disturbed the angiogenesis in a mice model of cerebral infarction by targeting inhibition of BDNF. Neurol India. 2021;69:1601–7.

    Article  PubMed  Google Scholar 

  306. Zhou Y, Huang D, Cai Y, Wang M, Ma W, Jiang Z, et al. lncRNA DHFRL1-4 knockdown attenuates cerebral ischemia/reperfusion injury by upregulating the levels of angiogenesis-related genes. Int J Mol Med. 2022;50:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Li T, Qing BL, Deng Y, Que XT, Wang CZ, Lu HW, et al. Inhibition of long non-coding RNA zinc finger antisense 1 improves functional recovery and angiogenesis after focal cerebral ischemia via microRNA-144-5p/fibroblast growth factor 7 axis. Bioengineered. 2022;13:1702–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China Major Project (No. 81730098), the Medical Innovation Major Project (No. 16CXZ009), and the Shanghai Science and Technology Commission Project (No. 21140901000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-yu Miao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Wang, Z. & Miao, Cy. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 44, 1305–1321 (2023). https://doi.org/10.1038/s41401-023-01061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01061-2

Keywords

This article is cited by

Search

Quick links