Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metrnl deficiency retards skin wound healing in mice by inhibiting AKT/eNOS signaling and angiogenesis

Abstract

Meteorin-like (Metrnl) is a novel secreted protein with various biological activities. In this study, we investigated whether and how Metrnl regulated skin wound healing in mice. Global Metrnl gene knockout mice (Metrnl−/−) and endothelial cell-specific Metrnl gene knockout mice (EC-Metrnl−/−) were generated. Eight-mm-diameter full-thickness excisional wound was made on the dorsum of each mouse. The skin wounds were photographed and analyzed. In C57BL/6 mice, we observed that Metrnl expression levels were markedly increased in skin wound tissues. We found that both global and endothelial cell-specific Metrnl gene knockout significantly retarded mouse skin wound healing, and endothelial Metrnl was the key factor affecting wound healing and angiogenesis. The proliferation, migration and tube formation ability of primary human umbilical vein endothelial cells (HUVECs) were inhibited by Metrnl knockdown, but significantly promoted by addition of recombinant Metrnl (10 ng/mL). Metrnl knockdown abolished the proliferation of endothelial cells stimulated by recombinant VEGFA (10 ng/mL) but not by recombinant bFGF (10 ng/mL). We further revealed that Metrnl deficiency impaired VEGFA downstream AKT/eNOS activation in vitro and in vivo. The damaged angiogenetic activity in Metrnl knockdown HUVECs was partly rescued by addition of AKT activator SC79 (10 μM). In conclusion, Metrnl deficiency retards skin wound healing in mice, which is related to impaired endothelial Metrnl-mediated angiogenesis. Metrnl deficiency impairs angiogenesis by inhibiting AKT/eNOS signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metrnl deficiency retarded common wound healing.
Fig. 2: Metrnl knockdown inhibited angiogenesis of primary HUVECs in vitro.
Fig. 3: Recombinant Metrnl enhanced angiogenesis of primary HUVECs in vitro.
Fig. 4: Metrnl deficiency retarded angiogenesis during skin wound healing.
Fig. 5: Endothelial Metrnl deficiency retarded wound healing.
Fig. 6: Metrnl regulates angiogenesis via AKT/eNOS signaling pathway in primary HUVECs.
Fig. 7: The effect of SC79 on the angiogenetic activity of Metrnl knockdown HUVECs.
Fig. 8: The expression of proteins related to AKT/eNOS signaling pathway in skin tissues (on day 0) and skin wound tissues (on day 7) from Metrnl−/− and WT mice.
Fig. 9: The schematic diagram on the important roles of Metrnl in wound healing and related mechanisms of angiogenesis.

Similar content being viewed by others

References

  1. Li ZY, Zheng SL, Wang P, Xu TY, Guan YF, Zhang YJ, et al. Subfatin is a novel adipokine and unlike Meteorin in adipose and brain expression. CNS Neurosci Ther. 2014;20:344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jørgensen JR, Fransson A, Fjord-Larsen L, Thompson LH, Houchins JP, Andrade N, et al. Cometin is a novel neurotrophic factor that promotes neurite outgrowth and neuroblast migration in vitro and supports survival of spiral ganglion neurons in vivo. Exp Neurol. 2012;233:172–81.

    Article  PubMed  Google Scholar 

  3. Ushach I, Arrevillaga-Boni G, Heller GN, Pone E, Hernandez-Ruiz M, Catalan-Dibene J, et al. Meteorin-like/Meteorin-β is a novel immunoregulatory cytokine associated with inflammation. J Immunol. 2018;201:3669–76.

    Article  CAS  PubMed  Google Scholar 

  4. Onuora S. Novel cytokine, IL-41, linked with PsA. Nat Rev Rheumatol. 2019;15:636.

    PubMed  Google Scholar 

  5. Jung TW, Lee SH, Kim HC, Bang JS, Abd El-Aty AM, Hacımüftüoğlu A, et al. Metrnl attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARδ-dependent pathways in skeletal muscle of mice. Exp Mol Med. 2018;50:1–11.

    PubMed  Google Scholar 

  6. Qi Q, Hu WJ, Zheng SL, Zhang SL, Le YY, Li ZY, et al. Metrnl deficiency decreases blood HDL cholesterol and increases blood triglyceride. Acta Pharmacol Sin. 2020;41:1568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. El-Ashmawy HM, Selim FO, Hosny TAM, Almassry HN. Association of low serum Meteorin-like (Metrnl) concentrations with worsening of glucose tolerance, impaired endothelial function and atherosclerosis. Diabetes Res Clin Pract. 2019;150:57–63.

    Article  CAS  PubMed  Google Scholar 

  8. Rupérez C, Ferrer-Curriu G, Cervera-Barea A, Florit L, Guitart-Mampel M, Garrabou G, et al. Meteorin-like/Meteorin-β protects heart against cardiac dysfunction. J Exp Med. 2021;218:20201206–23.

    Article  Google Scholar 

  9. Xu L, Cai Y, Wang Y, Xu C. Meteorin-like (Metrnl) attenuates myocardial ischemia/reperfusion injury-induced cardiomyocytes apoptosis by alleviating endoplasmic reticulum stress via activation of AMPK-PAK2 signaling in H9C2 cells. Med Sci Monit. 2020;26:e924564–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baht GS, Bareja A, Lee DE, Rao RR, Huang R, Huebner JL, et al. Meteorin-like facilitates skeletal muscle repair through a stat3/IGF-1 mechanism. Nat Metab. 2020;2:278–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li ZY, Song J, Zheng SL, Fan MB, Guan YF, Qu Y, et al. Adipocyte Metrnl antagonizes insulin resistance through PPARγ signaling. Diabetes. 2015;64:4011–22.

    Article  CAS  PubMed  Google Scholar 

  12. Li ZY, Fan MB, Zhang SL, Qu Y, Zheng SL, Song J, et al. Intestinal Metrnl released into the gut lumen acts as a local regulator for gut antimicrobial peptides. Acta Pharmacol Sin. 2016;37:1458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang SL, Li ZY, Wang DS, Xu TY, Fan MB, Cheng MH, et al. Aggravated ulcerative colitis caused by intestinal Metrnl deficiency is associated with reduced autophagy in epithelial cells. Acta Pharmacol Sin. 2020;41:763–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ushach I, Burkhardt AM, Martinez C, Hevezi PA, Gerber PA, Buhren BA, et al. Meteorin-like is a cytokine associated with barrier tissues and alternatively activated macrophages. Clin Immunol. 2015;156:119–27.

    Article  CAS  PubMed  Google Scholar 

  15. Zomer HD, Trentin AG. Skin wound healing in humans and mice: challenges in translational research. J Dermatol Sci. 2018;90:3–12.

    Article  PubMed  Google Scholar 

  16. Miao CY, Song J, Li ZY, Guan YF. Application of Metrnl protein or gene in treating endothelial dysfunction. China patent no.: ZL201610089072.7. Date of application: 17 February 2016. Date of patent: 7 July 2020.

  17. Zheng SL, Li ZY, Song J, Wang P, Xu J, Hu WJ, et al. Endothelial Metrnl determines circulating Metrnl level and maintains endothelial function against atherosclerosis. Acta Pharm Sin B. 2022; https://doi.org/10.1016/j.apsb.2022.12.008. 14 Dec 2022.

  18. Ganguli-Indra G. Protocol for cutaneous wound healing assay in a murine model. Methods Mol Biol. 2014;1210:151–9.

    Article  CAS  PubMed  Google Scholar 

  19. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M. A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc. 2007;2:481–5.

    Article  CAS  PubMed  Google Scholar 

  20. Jo H, Mondal S, Tan D, Nagata E, Takizawa S, Sharma AK, et al. Small molecule-induced cytosolic activation of protein kinase AKT rescues ischemia-elicited neuronal death. Proc Natl Acad Sci USA. 2012;109:10581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ling QS, Zhang SL, Tian JS, Cheng MH, Liu AJ, Fu FH, et al. Allisartan isoproxil reduces mortality of stroke-prone rats and protects against cerebrovascular, cardiac, and aortic damage. Acta Pharmacol Sin. 2021;42:871–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21:425–532.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15:385–403.

    Article  CAS  PubMed  Google Scholar 

  24. Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013;273:114–27.

    Article  CAS  PubMed  Google Scholar 

  25. Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci. 2018;19:1264–90.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hu Y, Tao R, Chen L, Xiong Y, Xue H, Hu L, et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnol. 2021;19:150–66.

    Article  CAS  Google Scholar 

  27. Liao L, Gong L, Zhou M, Xue X, Li Y, Peng C. Leonurine ameliorates oxidative stress and insufficient angiogenesis by regulating the PI3K/AKT-eNOS signaling pathway in H2O2-induced HUVECs. Oxid Med Cell Longev. 2021;2021:9919466–77.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qiu X, Liu J, Zheng C, Su Y, Bao L, Zhu B, et al. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif. 2020;53:12830–46.

    Article  Google Scholar 

  29. Yu M, Liu W, Li J, Lu J, Lu H, Jia W, et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res Ther. 2020;11:350–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Q, Tu T, Tai S, Tang L, Yang H, Zhu Z. Endothelial specific deletion of HMGB1 increases blood pressure and retards ischemia recovery through eNOS and ROS pathway in mice. Redox Biol. 2021;41:101890–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58:81–94.

    Article  PubMed  Google Scholar 

  32. Hosseini M, Koehler KR, Shafiee A. Biofabrication of human skin with its appendages. Adv Health Mater. 2022;11:e2201626.

    Article  Google Scholar 

  33. Reboll MR, Klede S, Taft MH, Cai CL, Field LJ, Lavine KJ, et al. Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase. Science. 2022;376:1343–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoffman M, Harger A, Lenkowski A, Hedner U, Roberts HR, Monroe DM. Cutaneous wound healing is impaired in hemophilia B. Blood. 2006;108:3053–60.

    Article  CAS  PubMed  Google Scholar 

  35. Moreira HR, Marques AP. Vascularization in skin wound healing: where do we stand and where do we go? Curr Opin Biotechnol. 2021;73:253–62.

    Article  PubMed  Google Scholar 

  36. Martin P, Gurevich DB. Macrophage regulation of angiogenesis in health and disease. Semin Cell Dev Biol. 2021;119:101–10.

    Article  CAS  PubMed  Google Scholar 

  37. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123–35.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Graves DT. Keratinocyte function in normal and diabetic wounds and modulation by FOXO1. J Diabetes Res. 2020;2020:3714704–12.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99:665–706.

    Article  CAS  PubMed  Google Scholar 

  40. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev. 2019;146:97–125.

    Article  CAS  PubMed  Google Scholar 

  41. Elmasri H, Ghelfi E, Yu CW, Traphagen S, Cernadas M, Cao H, et al. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway. Angiogenesis. 2012;15:457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China Major Project (82030110 and 81730098 to CYM), Medical Innovation Major Project (16CXZ009 to CYM), and Naval Medical University Project (2018-CGPZ-A03 to CYM).

Author information

Authors and Affiliations

Authors

Contributions

CYM and TYX designed the study. TYX, SLQ, JXZ, JS, ZWM, JXL, FYY, SLZ, HYZ and SNW performed the experiments. CYM, TYX, SLQ, JXZ, JS, SLZ and ZYL analyzed the data. CYM, TYX, SLQ and JXZ wrote and revised the manuscript.

Corresponding authors

Correspondence to Tian-ying Xu or Chao-yu Miao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Ty., Qing, Sl., Zhao, Jx. et al. Metrnl deficiency retards skin wound healing in mice by inhibiting AKT/eNOS signaling and angiogenesis. Acta Pharmacol Sin 44, 1790–1800 (2023). https://doi.org/10.1038/s41401-023-01090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01090-x

Keywords

Search

Quick links