Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activating Wnt/β-catenin signaling by autophagic degradation of APC contributes to the osteoblast differentiation effect of soy isoflavone on osteoporotic mesenchymal stem cells

Abstract

The functional role of autophagy in regulating differentiation of bone marrow mesenchymal stem cells (MSCs) has been studied extensively, but the underlying mechanism remains largely unknown. The Wnt/β-catenin signaling pathway plays a pivotal role in the initiation of osteoblast differentiation of mesenchymal progenitor cells, and the stability of core protein β-catenin is tightly controlled by the APC/Axin/GSK-3β/Ck1α complex. Here we showed that genistein, a predominant soy isoflavone, stimulated osteoblast differentiation of MSCs in vivo and in vitro. Female rats were subjected to bilateral ovariectomy (OVX); four weeks after surgery the rats were orally administered genistein (50 mg·kg−1·d−1) for 8 weeks. The results showed that genistein administration significantly suppressed the bone loss and bone-fat imbalance, and stimulated bone formation in OVX rats. In vitro, genistein (10 nM) markedly activated autophagy and Wnt/β-catenin signaling pathway, and stimulated osteoblast differentiation in OVX-MSCs. Furthermore, we found that genistein promoted autophagic degradation of adenomatous polyposis coli (APC), thus initiated β-catenin-driven osteoblast differentiation. Notably, genistein activated autophagy through transcription factor EB (TFEB) rather than mammalian target of rapamycin (mTOR). These findings unveil the mechanism of how autophagy regulates osteogenesis in OVX-MSCs, which expands our understanding that such interplay could be employed as a useful therapeutic strategy for treating postmenopausal osteoporosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genistein treatment prevented trabecular bone loss and promoted cancellous bone formation in ovariectomized rats.
Fig. 2: Genistein treatment reversed trabecular bone loss and abnormal autophagy induced by ovariectomy.
Fig. 3: Effects of genistein on proliferation, lineage commitment and autophagy of OVX-MSCs.
Fig. 4: Autophagy induction is required for genistein-mediated osteoblastic differentiation and Wnt/β-catenin signaling activation.
Fig. 5: Genistein-induced autophagy activates canonical Wnt/β-catenin signaling pathway.
Fig. 6: Genistein upregulates active β-catenin protein level through autophagic degradation of APC.
Fig. 7: TFEB upregulation is involved in genistein-activated autophagy.
Fig. 8: Effects of genistein on proliferation, osteoblast differentiation and autophagic activity of healthy-MSCs.

Similar content being viewed by others

References

  1. Nollet M, Santucci-Darmanin S, Breuil V, Al-Sahlanee R, Cros C, Topi M, et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy. 2014;10:1965–77.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li HX, Li DH, Ma ZM, Qian Z, Kang XM, Jin XX, et al. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy. 2018;14:1726–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang C, Tao HQ, Zhang HF, Xia Y, Bai JX, Ge GR, et al. TET2 regulates osteoclastogenesis by modulating autophagy in OVX-induced bone loss. Autophagy. 2022;18:2817–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li X, Xu JK, Dai BY, Wang XL, Guo QY, Qin L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev. 2020;62:101098.

    Article  CAS  PubMed  Google Scholar 

  5. Qi M, Zhang LQ, Ma Y, Shuai Y, Li LY, Luo KF, et al. Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis. Theranostics. 2017;7:4498–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Atteritano M, Mazzaferro S, Frisina A, Cannata ML, Bitto A, D’Anna R, et al. Genistein effects on quantitative ultrasound parameters and bone mineral density in osteopenic postmenopausal women. Osteoporos Int. 2009;20:1947–54.

    Article  CAS  PubMed  Google Scholar 

  7. Arcoraci V, Atteritano M, Squadrito F, D’Anna R, Marini H, Santoro D, et al. Antiosteoporotic activity of genistein aglycone in postmenopausal women: evidence from a post-hoc analysis of a multicenter randomized controlled trial. Nutrients. 2017;9:179.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hertrampf T, Gruca MJ, Seibel J, Laudenbach U, Fritzemeier KH, Diel P. The bone-protective effect of the phytoestrogen genistein is mediated via ER alpha-dependent mechanisms and strongly enhanced by physical activity. Bone. 2007;40:1529–35.

    Article  CAS  PubMed  Google Scholar 

  9. Bitto A, Burnett BP, Polito F, Marini H, Levy RM, Armbruster MA, et al. Effects of genistein aglycone in osteoporotic, ovariectomized rats: a comparison with alendronate, raloxifene and oestradiol. Br J Pharmacol. 2008;155:896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai J, Li YL, Zhou HH, Chen J, Chen MH, Xiao ZS. Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci. 2013;9:1089–98.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liao QC, Xiao ZS, Qin YF, Zhou HH. Genistein stimulates osteoblastic differentiation via p38 MAPK-Cbfa1 pathway in bone marrow culture. Acta Pharmacol Sin. 2007;28:1597–602.

    Article  CAS  PubMed  Google Scholar 

  12. Pan W, Quarles LD, Song LH, Yu YH, Jiao C, Tang HB, et al. Genistein stimulates the osteoblastic differentiation via NO/cGMP in bone marrow culture. J Cell Biochem. 2005;94:307–16.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou S, Turgeman G, Harris SE, Leitman DC, Komm BS, Bodine PV, et al. Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol Endocrinol. 2003;17:56–66.

    Article  CAS  PubMed  Google Scholar 

  14. Nabavi SF, Sureda A, Dehpour AR, Shirooie S, Silva AS, Devi KP, et al. Regulation of autophagy by polyphenols: Paving the road for treatment of neurodegeneration. Biotechnol Adv. 2018;36:1768–78.

    Article  CAS  PubMed  Google Scholar 

  15. Hasima H, Ozpolat B. Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis. 2014;5:e1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Min Res. 2012;27:2344–58.

    Article  CAS  Google Scholar 

  17. Ranes M, Zaleska M, Sakalas S, Knight R, Guettler S. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation. Mol Cell. 2021;81:3246–61.e3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang T, Bai JX, Lu M, Huang CL, Geng DC, Chen G, et al. Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nat Commun. 2022;13:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xi G, Wai C, Rosen CJ, Clemmons DR. A peptide containing the receptor binding site of insulin-like growth factor binding protein-2 enhances bone mass in ovariectomized rats. Bone Res. 2018;6:23.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4:102–6.

    Article  CAS  PubMed  Google Scholar 

  21. Bai JX, Ge GR, Wang Q, Li WM, Zheng K, Xu YZ, et al. Engineering stem cell recruitment and osteoinduction via bioadhesive molecular mimics to improve osteoporotic bone-implant integration. Research (Wash DC). 2022;2022:9823784.

    CAS  Google Scholar 

  22. Deng P, Yuan Q, Cheng YD, Li J, Liu ZQ, Liu Y, et al. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell. 2021;28:1057–73.e1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D, et al. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone. 2013;52:524–31.

    Article  CAS  PubMed  Google Scholar 

  25. Nuschke A, Rodrigues M, Stolz DB, Chu CT, Griffith L, Wells A. Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Res Ther. 2014;5:140.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salvador N, et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell. 2004;15:3132–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Horst G, van der Werf SM, Farih-Sips H, van Bezooijen RL, Löwik CW, Karperien M. Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Min Res. 2005;20:1867–77.

    Article  Google Scholar 

  28. Nusse R, Clevers H. Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  29. Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366:818–22.

    Article  CAS  PubMed  Google Scholar 

  30. Casares-Crespo L, Calatayud-Baselga I, García-Corzo L, Mira H. On the Role of basal autophagy in adult neural stem cells and neurogenesis. Front Cell Neurosci. 2018;12:339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jacomin AC, Samavedam S, Promponas V, Nezis IP. iLIR database: A web resource for LIR motif-containing proteins in eukaryotes. Autophagy. 2016;12:1945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou YN, Wu YQ, Ma WD, Jiang XQ, Takemra A, Uemura M, et al. The effect of quercetin delivery system on osteogenesis and angiogenesis under osteoporotic conditions. J Mater Chem. B 2017;5:612–25.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Xin ZX, Cai MJ. The role of resveratrol in bone marrow-derived mesenchymal stem cells from patients with osteoporosis. J Cell Biochem. 2019;120:16634–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Louvet L, Leterme D, Delplace S, Miellot F, Marchandise P, Gauthier V, et al. Sirtuin 1 deficiency decreases bone mass and increases bone marrow adiposity in a mouse model of chronic energy deficiency. Bone. 2020;136:115361.

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura S, Shigeyama S, Minami S, Shima T, Akayama S, Matsuda T, et al. LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat Cell Biol. 2020;22:1252–63.

    Article  CAS  PubMed  Google Scholar 

  36. Chau MN, El Touny LH, Jagadeesh S, Banerjee PP. Physiologically achievable concentrations of genistein enhance telomerase activity in prostate cancer cells via the activation of STAT3. Carcinogenesis. 2007;28:2282–90.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang LY, Xue HG, Chen JY, Chai W, Ni M. Genistein induces adipogenic differentiation in human bone marrow mesenchymal stem cells and suppresses their osteogenic potential by upregulating PPARγ. Exp Ther Med. 2016;11:1853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, et al. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. Embo J. 2013;32:1903–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu H, Lu XX, Wang JR, Yang TY, Li XM, He XS, et al. TRAF6 inhibits colorectal cancer metastasis through regulating selective autophagic CTNNB1/β-catenin degradation and is targeted for GSK3B/GSK3β-mediated phosphorylation and degradation. Autophagy. 2019;15:1506–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao C, Cao WP, Bao L, Zuo W, Xie GM, Cai TT, et al. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol. 2010;12:781–90.

    Article  CAS  PubMed  Google Scholar 

  41. Cheng MZ, Xue H, Cao WP, Li WX, Chen H, Liu BF, et al. Receptor for activated c kinase 1 (RACK1) promotes dishevelled protein degradation via autophagy and antagonizes wnt signaling. J Biol Chem. 2016;291:12871–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo XM, Ye SJ, Jiang QQ, Gong Y, Yuan Y, Hu XT, et al. Wnt inhibitory factor-1-mediated autophagy inhibits Wnt/β-catenin signaling by downregulating dishevelled-2 expression in non-small cell lung cancer cells. Int J Oncol. 2018;53:904–14.

    CAS  PubMed  Google Scholar 

  43. Liang ZF, Zhang LJ, Su HT, Luan R, Na N, Sun LN, et al. MTOR signaling is essential for the development of thymic epithelial cells and the induction of central immune tolerance. Autophagy 2018;14:505–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang K, Zhang YY, Gu LJ, Lan MM, Liu CC, Wang M, et al. Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing Dishevelled-2 and preventing autophagy. Nat Commun. 2018;9:5129.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Romero M, Sabaté-Pérez A, Francis VA, Castrillón-Rodriguez I, Díaz-Ramos A, Sánchez-Feutrie M, et al. TP53INP2 regulates adiposity by activating β-catenin through autophagy-dependent sequestration of GSK3β. Nat Cell Biol. 2018;20:443–54.

    Article  CAS  PubMed  Google Scholar 

  46. Datta S, Choudhury D, Das A, Mukherjee DD, Dasgupta M, Bandopadhyay S, et al. Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway. Apoptosis. 2019;24:414–33.

    Article  CAS  PubMed  Google Scholar 

  47. Yoshida G, Kawabata T, Takamatsu H, Saita S, Nakamura S, Nishikawa K, et al. Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis. Autophagy. 2022;18:2323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi HK, Yuan H, Fang F, Wei X, Liu L, Li Q, et al. Tsc1 regulates the balance between osteoblast and adipocyte differentiation through autophagy/notch1/β-catenin cascade. J Bone Min Res. 2018;33:2021–34.

    Article  CAS  Google Scholar 

  49. Jung YS, Jun S, Kim MJ, Lee SH, Suh HN, Lien EM, et al. TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/β-catenin signalling. Nat Cell Biol. 2018;20:1421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10:2208–22.

    Article  CAS  PubMed  Google Scholar 

  51. Liu CG, Sun LS, Yang J, Liu T, Yang YL, Kim SM, et al. FSIP1 regulates autophagy in breast cancer. Proc Natl Acad Sci USA. 2018;115:13075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang S, Xie YL, Yan FF, Zhang YF, Yang ZQ, Chen Z, et al. Negative pressure wound therapy improves bone regeneration by promoting osteogenic differentiation via the AMPK-ULK1-autophagy axis. Autophagy. 2022;18:2229–45.

    Article  CAS  PubMed  Google Scholar 

  53. Chen MY, Dai YS, Liu SY, Fan YX, Ding ZX, Li D. TFEB biology and agonists at a glance. Cells. 2021;10:333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang Y, Chen Y, Shaw AM, Goldfine H, Tian JQ, Cai JY. Enhancing TFEB-mediated cellular degradation pathways by the mTORC1 inhibitor quercetin. Oxid Med Cell Longev. 2018;2018:5073420.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schaub T, Gürgen D, Maus D, Lange C, Tarabykin V, Dragun D, et al. mTORC1 and mTORC2 differentially regulate cell fate programs to coordinate osteoblastic differentiation in mesenchymal stromal cells. Sci Rep. 2019;9:20071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nàger M, Sallán MC, Visa A, Pushparaj C, Santacana M, Macià A, et al. Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy. 2018;14:619–36.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62.

    Article  CAS  PubMed  Google Scholar 

  58. Heim M, Frank O, Kampmann G, Sochocky N, Pennimpede T, Fuchs P, et al. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology. 2004;145:848–59.

    Article  CAS  PubMed  Google Scholar 

  59. Oliver L, Hue E, Priault M, Vallette FM. Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev. 2012;21:2779–88.

    Article  CAS  PubMed  Google Scholar 

  60. Florencio-Silva R, Sasso GRS, Sasso-Cerri E, Simões MJ, Cerri PS. Effects of estrogen status in osteocyte autophagy and its relation to osteocyte viability in alveolar process of ovariectomized rats. Biomed Pharmacother. 2018;98:406–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant number, 32000976 and 82071134).

Author information

Authors and Affiliations

Authors

Contributions

JG designed the experiments and wrote the manuscript. JG, YJY, JYL, and MYL performed most of the experiments. KX prepared the bone specimens and performed the histology. SMX generated the OVX rat model. SYW contributed to analysis and interpretation of data. CY supervised the study, and revised manuscript critically for important intellectual content. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Shao-yi Wang or Chi Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, J., Yu, Yj., Li, Jy. et al. Activating Wnt/β-catenin signaling by autophagic degradation of APC contributes to the osteoblast differentiation effect of soy isoflavone on osteoporotic mesenchymal stem cells. Acta Pharmacol Sin 44, 1841–1855 (2023). https://doi.org/10.1038/s41401-023-01066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01066-x

Keywords

This article is cited by

Search

Quick links