Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteasomal inhibitors induce myeloma cell pyroptosis via the BAX/GSDME pathway

Abstract

Proteasomes are overexpressed in multiple myeloma (MM) and proteasomal inhibitors (PIs) have been widely used for the treatment of MM. PIs are reported to induce MM cell apoptosis but impair necroptosis. In the present study, we found that PIs MG132 and bortezomib induce MM cell pyroptosis, a novel type of cell death, in a GSDME-dependent manner. Lack of GSDME totally blocks PI-induced pyroptosis. Interestingly, we found that Caspase-3/6/7/9 are all involved in pyroptosis triggered by PIs because the specific inhibitor of each caspase ablates GSDME activation. PIs markedly reduce mitochondrial membrane potential. Moreover, PIs disrupt the interaction of Bcl-2 and BAX, induce cytochrome c release from mitochondria to cytosol and activate GSDME. Furthermore, we found that overexpression of an N-terminal portion of GSDME suffices to release cytochrome c from mitochondria and to activate Caspase-3/9, suggesting N-GSDME might penetrate the mitochondrial membrane. Consistent with Bcl-2 inhibition, BAX can induce MM cell pyroptosis in a GSDME-dependent manner. In accordance with these findings, inhibition of Bcl-2 synergizes with PIs to induce MM cell pyroptosis. Therefore, the present study indicates that PIs trigger MM cell pyroptosis via the mitochondrial BAX/GSDME pathway and provides a rationale for combined treatment of MM with Bcl-2 and proteasome inhibitors to increase therapeutic efficiency via induction of pyroptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PIs induce myeloma cell pyroptosis.
Fig. 2: PIs activate GSDME in association with Caspase-3 but not Caspase-1.
Fig. 3: Inhibition of Caspase-3, -6, -7 and -9 ablates PI-triggered cleavage of GSDME in myeloma cell pyroptosis.
Fig. 4: GSDME is required for myeloma cell pyroptosis induced by inhibition of proteasomes.
Fig. 5: N-terminal GSDME activates Caspase-9/3 by promoting Cyto c release from mitochondria.
Fig. 6: Inhibition of Bcl-2 enhances PI-induced myeloma cell pyroptosis.
Fig. 7: BAX promotes myeloma cell pyroptosis in a GSDME-dependent manner.

Similar content being viewed by others

References

  1. Thibaudeau TA, Smith DM. A practical review of proteasome pharmacology. Pharmacol Rev. 2019;71:170–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, et al. Diagnosis and management of multiple myeloma: a review. JAMA. 2022;327:464–77.

    Article  CAS  PubMed  Google Scholar 

  3. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18:1106–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laussmann MA, Passante E, Dussmann H, Rauen JA, Wurstle ML, Delgado ME, et al. Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ. 2011;18:1584–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ali M, Mocarski ES. Proteasome inhibition blocks necroptosis by attenuating death complex aggregation. Cell Death Dis. 2018;9:346.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42:245–54.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547:99–103.

    Article  CAS  PubMed  Google Scholar 

  8. Xu Y, Xu M, Tong J, Tang X, Chen J, Chen X, et al. Targeting the Otub1/c-Maf axis for the treatment of multiple myeloma. Blood. 2021;137:1478–90.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Tong J, Tang X, Juan J, Cao B, Hurren R, et al. The ubiquitin ligase HERC4 mediates c-Maf ubiquitination and delays the growth of multiple myeloma xenografts in nude mice. Blood. 2016;127:1676–86.

    Article  CAS  PubMed  Google Scholar 

  10. Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia ZY. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced Injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res. 2019;2019:8151836.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Broz P, Pelegrin P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020;20:143–57.

    Article  CAS  PubMed  Google Scholar 

  12. Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol. 2017;24:507–14.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell. 2020;180:941–55.e20.

    Article  CAS  PubMed  Google Scholar 

  14. Haga N, Fujita N, Tsuruo T. Mitochondrial aggregation precedes cytochrome c release from mitochondria during apoptosis. Oncogene. 2003;22:5579–85.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Q, Gong B, Almasan A. Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ. 2000;7:227–33.

    Article  CAS  PubMed  Google Scholar 

  16. Reungpatthanaphong P, Dechsupa S, Meesungnoen J, Loetchutinat C, Mankhetkorn S. Rhodamine B as a mitochondrial probe for measurement and monitoring of mitochondrial membrane potential in drug-sensitive and -resistant cells. J Biochem Biophys Methods. 2003;57:1–16.

    Article  CAS  PubMed  Google Scholar 

  17. Lindsay J, Esposti MD, Gilmore AP. Bcl-2 proteins and mitochondria–specificity in membrane targeting for death. Biochim Biophys Acta. 2011;1813:532–9.

    Article  CAS  PubMed  Google Scholar 

  18. Aluvila S, Mandal T, Hustedt E, Fajer P, Choe JY, Oh KJ. Organization of the mitochondrial apoptotic BAK pore: oligomerization of the BAK homodimers. J Biol Chem. 2014;289:2537–51.

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Glytsou C, Zhou H, Narang S, Reyna DE, Lopez A, et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Discov. 2019;9:890–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  21. Hu L, Chen M, Chen X, Zhao C, Fang Z, Wang H, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 2020;11:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 2018;362:1064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun. 2019;10:1689.

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Torre-Minguela C, Gómez AI, Couillin I, Pelegrín P. Gasdermins mediate cellular release of mitochondrial DNA during pyroptosis and apoptosis. FASEB J. 2021;35:e21757.

    Article  PubMed  Google Scholar 

  25. Ku B, Liang C, Jung JU, Oh BH. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res. 2011;21:627–41.

    Article  CAS  PubMed  Google Scholar 

  26. Shi CS, Kehrl JH. Bcl-2 regulates pyroptosis and necroptosis by targeting BH3-like domains in GSDMD and MLKL. Cell Death Discov. 2019;5:151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Griswold AR, Huang HC, Bachovchin DA. The NLRP1 inflammasome induces pyroptosis in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2022;63:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author extended many thanks to Prof. Michael F. Moran, The Hospital for Sick Children, University of Toronto, Toronto, Canada, for his critical reading and editing of the manuscript. This project was partly supported by National Natural Science Foundation of China (#82170176, #81970194), by the National Key Research and Development Program of China (#2022YFC2705003), by Guangzhou Medical University Discipline Construction Funds (Basic Medicine) (#JCXKJS2022A05), by Guangzhou Key Discipline of Medicine (Geriatric Medicine, #ZDXK202103).

Author information

Authors and Affiliations

Authors

Contributions

XLM designed the study; JPL, YMH, YLC, and YNS conducted experiments; XLM, JPL, and YMH analyzed data; GSH and ZGZ provided key materials. JPL, YMH and XLM wrote the manuscript.

Corresponding authors

Correspondence to Gui-song He, Zhi-gang Zhu or Xin-liang Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Jp., He, Ym., Cui, Yl. et al. Proteasomal inhibitors induce myeloma cell pyroptosis via the BAX/GSDME pathway. Acta Pharmacol Sin 44, 1464–1474 (2023). https://doi.org/10.1038/s41401-023-01060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01060-3

Keywords

This article is cited by

Search

Quick links