Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

JP1, a polypeptide specifically targeting integrin αVβ3, ameliorates choroidal neovascularization and diabetic retinopathy in mice

Abstract

Anti-vascular endothelial growth factor (VEGF) drugs have revolutionized the treatment of neovascular eye diseases, but responses are incomplete in some patients. Recent evidence shows that integrins are involved in the pathogenesis of neovascular age-related macular degeneration and diabetic retinopathy. JP1, derived from an optimized seven-amino-acid fragment of JWA protein, is a polypeptide specifically targeting integrin αVβ3. In this study we evaluated the efficacy of JP1 on laser-induced choroidal neovascularization (CNV) and retinal vascular leakage. CNV mice received a single intravitreal (IVT) injection of JP1 (10, 20, 40 µg) or ranibizumab (RBZ, 10 µg). We showed that JP1 injection dose-dependently inhibited laser-induced CNV; the effect of RBZ was comparable to that of 20 µg JP1; a combined IVT injection of JP1 (20 μg) and RBZ (5 μg) exerted a synergistic effect on CNV. In the 3rd month after streptozotocin injection, diabetic mice receiving IVT injection of JP1 (40 µg) or RBZ (10 µg) once a week for 4 weeks showed significantly suppressed retinal vascular leakage. In both in vivo and in vitro experiments, JP1 counteracted oxidative stress and inflammation via inhibiting ROS/NF-κB signaling in microglial cells, and angiogenesis via modulating MEK1/2-SP1-integrin αVβ3 and TRIM25-SP1-MMP2 axes in vascular endothelial cells. In addition, intraperitoneal injection of JP1 (1, 5 or 10 mg) once every other day for 3 times also dose-dependently inhibited CNV. After intraperitoneal injection of FITC-labeled JP1 (FITC-JP1) or FITC in laser-induced CNV mice, the fluorescence intensity in the CNV lesion was markedly increased in FITC-JP1 group, compared with that in FITC group, confirming that JP1 could penetrate the blood-retinal barrier to target CNV lesion. We conclude that JP1 can be used to design novel CNV-targeting therapeutic agents that may replace current invasive intraocular injections.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: JP1 suppressed and resolved CNV.
Fig. 2: JP1 decreases microglials activation and infiltration into CNV areas, with downregulation of some chemokines.
Fig. 3: JP1 attenuated oxidative stress and inflammation in microglial cells in the CNV models.
Fig. 4: JP1 suppressed LPS-induced oxidative stress and inflammation in BV2 cells.
Fig. 5: JP1 inhibited angiogenesis through regulating the MEK1/2-SP1-Integrin αVβ3 and TRIM25-SP1-MMP2 axes both in vivo and in vitro.
Fig. 6: JP1 inhibited vascular leakage in the mouse STZ model.
Fig. 7: Intraperitoneal injection of JP1 reduces CNV leakage and area.
Fig. 8: JP1 i.p. treatment enhances FITC accumulation in the CNV area.
Fig. 9: Graphical summary of finding.

References

  1. Yun JH. Hepatocyte growth factor prevents pericyte loss in diabetic retinopathy. Microvasc Res. 2021;133:104103.

    Article  CAS  PubMed  Google Scholar 

  2. Granstam E, Aurell S, Sjövall K, Paul A. Switching anti-VEGF agent for wet AMD: evaluation of impact on visual acuity, treatment frequency and retinal morphology in a real-world clinical setting. Graefes Arch Clin Exp Ophthalmol. 2021;259:2085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cécile D. Epidemiology of age-related macular degeneration. La Rev du praticien. 2017;67:88–91.

    Google Scholar 

  4. Mettu PS, Allingham MJ, Cousins SW. Incomplete response to anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res. 2020;82:100906.

    Article  PubMed  Google Scholar 

  5. Sun X, Yang S, Zhao J. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Dev Ther. 2016;10:1857–67.

    Article  Google Scholar 

  6. Ehlken C, Jungmann S, Bhringer D, Agostini HT, Pielen A. Switch of anti-VEGF is an option for nonresponders in the treatment of AMD. Eye. 2014;28:538–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tian Y, Zhang F, Qiu Y, Wang S, Li F, Zhao J, et al. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat Biomed Eng. 2021;5:968–82.

    Article  CAS  PubMed  Google Scholar 

  8. Wallsh JO, Gallemore RP. Anti-VEGF-resistant retinal diseases: a review of the latest treatment options. Cells. 2021;10:1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pb A, Nam A, Tacma B, Wudunn AD, Lbc A. The acute and chronic effects of intravitreal anti-vascular endothelial growth factor injections on intraocular pressure: a review. Surv Ophthalmol. 2018;63:281–95.

    Article  Google Scholar 

  10. Baek SU, Park IW, Suh W. Long-term intraocular pressure changes after intravitreal injection of bevacizumab. Cutan Ocul Toxicol. 2016;35:310–4.

    Article  CAS  PubMed  Google Scholar 

  11. Rayess N, Rahimy E, Storey P, Shah CP, Wolfe JD, Chen E, et al. Postinjection endophthalmitis rates and characteristics following intravitreal bevacizumab, ranibizumab, and aflibercept. Am J Ophthalmol. 2016;165:88–93.

    Article  CAS  PubMed  Google Scholar 

  12. Ren C, Hui S, Jiang J, Liu Q, Du Y, He M, et al. The effect of CM082, an oral tyrosine kinase inhibitor, on experimental choroidal neovascularization in rats. J Ophthalmol. 2017;2017:6145651.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 2019;20:1–17.

    Article  Google Scholar 

  14. Hu TT, Vanhove M, Porcu M, Van Hove I, Van Bergen T, Jonckx B, et al. The potent small molecule integrin antagonist THR-687 is a promising next-generation therapy for retinal vascular disorders. Exp Eye Res. 2019;180:43–52.

    Article  CAS  PubMed  Google Scholar 

  15. Umeda N, Shu K, Akiyama H, Zahn G, Campochiaro PA. Suppression and regression of choroidal neovascularization by systemic administration of an α5β1 integrin antagonist. Mol Pharmacol. 2006;69:1820–8.

    Article  CAS  PubMed  Google Scholar 

  16. Ramakrishnan V, Bhaskar V, Law DA, Wong MH, DuBridge RB, Breinberg D, et al. Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. J Exp Ther Oncol. 2006;5:273–86.

    CAS  PubMed  Google Scholar 

  17. Nebbioso M, Lambiase A, Cerini A, Limoli PG, La Cava M, Greco A. Therapeutic approaches with intravitreal injections in geographic atrophy secondary to age-related macular degeneration: current drugs and potential molecules. Int J Mol Sci. 2019;20:1693.

    Article  CAS  PubMed Central  Google Scholar 

  18. Askew BC, Furuya T, Edwards DS. Pharmacodynamics and pharmacokinetics of SF0166, a topically administered αvβ3 integrin antagonist, for the treatment of retinal diseases. J Pharmacol Exp Ther. 2018;366:jpet.118.248427.

    Article  Google Scholar 

  19. Cao H, Xia W, Shen Q, Hua L, Jian Y, Li A, et al. Role of JWA in acute promyelocytic leukemia cell differentiation and apoptosis triggered by retinoic acid, 12-tetradecanoylphorbol-13-acetate and arsenic trioxide. Chin Sci Bull. 2002;47:834–8.

    Article  CAS  Google Scholar 

  20. Chen Y, Huang Y, Huang Y, Xia X, Zhang J, Zhou Y, et al. JWA suppresses tumor angiogenesis via Sp1-activated matrix metalloproteinase-2 and its prognostic significance in human gastric cancer. Carcinogenesis. 2014;35:442–51.

    Article  CAS  PubMed  Google Scholar 

  21. Cui J, Shu C, Xu J, Chen D, Zhou J. JP1 suppresses proliferation and metastasis of melanoma through MEK1/2 mediated NEDD4L-SP1-Integrin αvβ3 signaling. Theranostics. 2020;10:8036–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lambert V, Lecomte J, Hansen S, Blacher S, Gonzalez M, Struman I, et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc. 2013;8:2197–211.

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Zhu M, Wu W, Qin B, Ding D. Brivanib, a multitargeted small-molecule tyrosine kinase inhibitor, suppresses laser-induced CNV in a mouse model of neovascular AMD. J Cell Physiol. 2020;235:1259–73.

    Article  CAS  PubMed  Google Scholar 

  24. Lai K, Gong Y, Zhao W, Li L, Jin C. Triptolide attenuates laser-induced choroidal neovascularization via M2 macrophage in a mouse model. Biomed Pharmacother. 2020;129:110312.

    Article  CAS  PubMed  Google Scholar 

  25. Bergen TV, Hu TT, Etienne I, Reyns GE, Moons L, Feyen J Neutralization of placental growth factor as a novel treatment option in diabetic retinopathy. Exp Eye Res. 2017:S0014483517304505.

  26. Naderi A, Zahed R, Aghajanpour L, Amoli FA, Lashay A. Long term features of diabetic retinopathy in streptozotocin-induced diabetic Wistar rats. Exp Eye Res. 2019;184:213–20.

    Article  CAS  PubMed  Google Scholar 

  27. Indaram M, Ma W, Zhao L, Fariss RN, Rodriguez IR, Wong WT. 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: a potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep. 2015;5:9144.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res. 2015;45:30–57.

    Article  PubMed  Google Scholar 

  29. Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol. 2020;11:564077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang Y, Liu F, Tang M, Yuan M, Hu A, Zhan Z, et al. Macrophage polarization in experimental and clinical choroidal neovascularization. Sci Rep. 2016;6:30933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bretz CA, Divoky V, Prchal J, Kunz E, Simmons AB, Wang H, et al. Erythropoietin signaling increases choroidal macrophages and cytokine expression, and exacerbates choroidal neovascularization. Sci Rep. 2018;8:2161.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yeo NJY, Chan EJJ, Cheung C. Choroidal neovascularization: mechanisms of endothelial dysfunction. Front Pharmacol. 2019;10:1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim SY, Kambhampati SP, Bhutto IA, Mcleod DS, Kannan RM. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model. Exp Eye Res. 2020;203:108391.

    Article  PubMed  Google Scholar 

  34. Zhao X, Wang R, Xiong J, Yan D, Li A, Wang S, et al. JWA antagonizes paraquat-induced neurotoxicity via activation of Nrf2. Toxicol Lett. 2017;277:32–40.

    Article  CAS  PubMed  Google Scholar 

  35. Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lier J, Streit WJ, Bechmann I. Beyond activation: characterizing microglial functional phenotypes. Cells. 2021;10:2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim YJ, Park SY, Koh YJ, Lee JH. Anti-neuroinflammatory effects and mechanism of action of Fructus ligustri lucidi extract in BV2 microglia. Plants. 2021;10:688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu J, Tang Y, Farshidpour M, Cheng Y, Zhang G, Jafarnejad SM, et al. JWA inhibits melanoma angiogenesis by suppressing ILK signaling and is an independent prognostic biomarker for melanoma. Carcinogenesis. 2013;34:2778–88.

    Article  CAS  PubMed  Google Scholar 

  39. Chen JJ, Ren YL, Shu CJ, Zhang Y, Chen MJ, Xu J, et al. JP3, an antiangiogenic peptide, inhibits growth and metastasis of gastric cancer through TRIM25/SP1/MMP2 axis. J Exp Clin Cancer Res. 2020;39:118.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Capitão M, Soares R. Angiogenesis and inflammation crosstalk in diabetic retinopathy. J Cell Biochem. 2016;117:2443–53.

    Article  PubMed  Google Scholar 

  41. Hamdan F, Bigdeli Z, Asghari SM, Sadremomtaz A, Balalaie S. Synthesis of modified RGD-based peptides and their in vitro activity. ChemMedChem. 2019;14:282–8.

    Article  CAS  PubMed  Google Scholar 

  42. Semeraro F, Cancarini A, Dell’Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res. 2015;2015:1–16.

    Article  Google Scholar 

  43. Arroba AI, Valverde Á. Modulation of microglia in the retina: new insights into diabetic retinopathy. Acta Diabetol. 2017;54:527.

    Article  PubMed  Google Scholar 

  44. Wang M, Wang X, Zhao L, Ma W, Rodriguez IR, Fariss RN, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci. 2014;34:3793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alves CH, Fernandes R, Santiago AR, Ambrósio AF. Microglia contribution to the regulation of the retinal and choroidal vasculature in age-related macular degeneration. Cells. 2020;9:1217.

    Article  CAS  PubMed Central  Google Scholar 

  46. Zhang T, Ouyang H, Mei X, Lu B, Yu Z, Chen K, et al. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway. FASEB J. 2019;33:11776–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen N, Jiang K, Yan GG. Effect of fenofibrate on diabetic retinopathy in rats via SIRT1/NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23:8630–6.

    CAS  PubMed  Google Scholar 

  48. Cai Y, Li W, Tu H, Chen N, Zhong Z, Yan P, et al. Curcumolide reduces diabetic retinal vascular leukostasis and leakage partly via inhibition of the p38MAPK/NF-κ B signaling. Bioorg Med Chem Lett. 2017;27:1835–9.

    Article  CAS  PubMed  Google Scholar 

  49. Popiolek-Barczyk K, Mika J. Targeting the microglial signaling pathways: new insights in the modulation of neuropathic pain. Curr Med Chem. 2016;23:2908–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miao SH, Sun HB, Ye Y, Yang JJ, Shi YW, Lu M, et al. Astrocytic JWA expression is essential to dopaminergic neuron survival in the pathogenesis of Parkinson’s disease. CNS Neurosci Ther. 2014;20:754–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhatwadekar AD, Kansara V, Luo Q, Ciulla T. Anti-integrin therapy for retinovascular diseases. Expert Opin Investig Drugs. 2020;29:935–45.

    Article  CAS  PubMed  Google Scholar 

  52. Sani S, Messe M, Fuchs Q, Pierrevelcin M, Laquerriere P, Entz-Werle N, et al. Biological relevance of RGD-integrin subtype-specific ligands in cancer. Chembiochem. 2021;22:1151–60.

    Article  CAS  PubMed  Google Scholar 

  53. Mettu PS, Allingham MJ, Cousins SW. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res. 2021;82:100906.

    Article  CAS  PubMed  Google Scholar 

  54. Sheets KG, Jun B, Zhou Y, Zhu M, Petasis NA, Gordon WC, et al. Microglial ramification and redistribution concomitant with the attenuation of choroidal neovascularization by neuroprotectin D1. Mol Vis. 2013;19:1747–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Deczkowska A, Amit I, Schwartz M. Microglial immune checkpoint mechanisms. Nat Neurosci. 2018;21:779–86.

    Article  CAS  PubMed  Google Scholar 

  56. Hikage F, Lennikov A, Mukwaya A, Lachota M, Ida Y, Utheim TP, et al. NF-κB activation in retinal microglia is involved in the inflammatory and neovascularization signaling in laser-induced choroidal neovascularization in mice. Exp Cell Res. 2021;403:112581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang R, Zhao X, Xu J, Wen Y, Li A, Lu M, et al. Astrocytic JWA deletion exacerbates dopaminergic neurodegeneration by decreasing glutamate transporters in mice. Cell Death Dis. 2018;9:352.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim SY, Kambhampati SP, Bhutto IA, McLeod DS, Lutty GA, Kannan RM. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model. Exp Eye Res. 2021;203:108391.

    Article  CAS  PubMed  Google Scholar 

  59. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:12.

    Article  PubMed Central  Google Scholar 

  60. Chu Y, Chen N, Yu H, Mu H, He B, Hua H, et al. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles. Int J Nanomed. 2017;12:1353–68.

    Article  CAS  Google Scholar 

  61. Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–85.

    Article  PubMed  Google Scholar 

  62. Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370:602–24.

    Article  CAS  PubMed  Google Scholar 

  63. Cai W, Chen Q, Shen T, Yang Q, Hu W, Zhao P, et al. Intravenous anti-VEGF agents with RGD peptide-targeted core cross-linked star (CCS) polymers modified with indocyanine green for imaging and treatment of laser-induced choroidal neovascularization. Biomater Sci. 2020;8:4481–91.

    Article  CAS  PubMed  Google Scholar 

  64. Wang X, Lou N, Eberhardt A, Yang Y, Kusk P, Xu Q, et al. An ocular glymphatic clearance system removes β-amyloid from the rodent eye. Sci Transl Med. 2020;12:eaaw3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Kun Ding for technical assistance with the experiments, and to Yong-ke Cao for proofreading of the manuscript. This study is supported by the National Natural Science Foundation of China (Nos. 81970821, 81973156, 81770973, 81870694).

Author information

Authors and Affiliations

Authors

Contributions

ZX, STY, JWZ, and QHL designed the research project; ZX, XJW, RWC, and JHC performed the research; ZX, JHC, STY, JWZ, and QHL analyzed the data; ZX wrote the manuscript draft; ZX, STY, JWZ and QHL revised the manuscript.

Corresponding authors

Correspondence to Song-tao Yuan, Jian-wei Zhou or Qing-huai Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Wu, Xj., Cheng, Rw. et al. JP1, a polypeptide specifically targeting integrin αVβ3, ameliorates choroidal neovascularization and diabetic retinopathy in mice. Acta Pharmacol Sin (2022). https://doi.org/10.1038/s41401-022-01005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-022-01005-2

Keywords

  • choroidal neovascularization
  • diabetic retinopathy
  • JP1
  • oxidative stress
  • inflammation
  • angiogenesis

Search

Quick links