Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension


Hypertension is the most prevalent health condition worldwide, affecting ~1 billion people. Gordon’s syndrome is a form of secondary hypertension that can arise due to a number of possible mutations in key genes that encode proteins in a pathway containing the With No Lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive kinase 1 (OSR1). This pathway regulates the activity of the thiazide-sensitive sodium chloride cotransporter (NCC), which is responsible for NaCl reabsorption in the distal nephron. Therefore, mutations in genes encoding proteins that regulate the NCC proteins disrupt ion homeostasis and cause hypertension by increasing NaCl reabsorption. Thiazide diuretics are currently the main treatment option for Gordon’s syndrome. However, they have a number of side effects, and chronic usage can lead to compensatory adaptations in the nephron that counteract their action. Therefore, recent research has focused on developing novel inhibitory molecules that inhibit components of the WNK-SPAK/OSR1-NCC pathway, thereby reducing NaCl reabsorption and restoring normal blood pressure. In this review we provide an overview of the currently reported molecular inhibitors of the WNK-SPAK/OSR1-NCC pathway and discuss their potential as treatment options for Gordon’s syndrome.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic representation of the WNK-SPAK-NCC pathway and WNK ubiquitination by the CUL3-KLHL3 E3 ubiquitin ligase complex.


  1. 1.

    World Health Organisation. A global brief on hypertension: silent killer, global public health crisis. Geneva: World Health Organisation; 2013. p. 40.

  2. 2.

    World Health Organisation. Global status report on noncommunicable diseases 2010. Geneva: World Health Organisation; 2011. p. 176.

  3. 3.

    Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    PubMed  Google Scholar 

  4. 4.

    World Health Organization. Global health estimates 2016: deaths by cause, age, sex, by country and by region, 2000–2016. Geneva: World Health Organization; 2018.

  5. 5.

    Simonetti GD, Mohaupt MG, Bianchetti MG. Monogenic forms of hypertension. Eur J Pediatr. 2012;171:1433–9.

    CAS  PubMed  Google Scholar 

  6. 6.

    Bergaya S, Vidal-Petiot E, Jeunemaitre X, Hadchouel J. Pathogenesis of pseudohypoaldosteronism type 2 by WNK1 mutations. Curr Opin Nephrol Hypertens. 2012;21:39–45.

    CAS  PubMed  Google Scholar 

  7. 7.

    Hall ME, Hall JE. Pathogenesis of hypertension. In: Bakris GL, Sorrentino MJ, editors. Hypertension: a companion to Braunwald’s heart disease, 3rd ed. Philadelphia. Elsevier; 2018. pp. 33–51.

  8. 8.

    Mansfield TA, Simon DB, Farfel Z, Bia M, Tucci JR, Lebel M, et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p11-q21. Nat Genet. 1997;16:202–5.

    CAS  PubMed  Google Scholar 

  9. 9.

    Disse-Nicodeme S, Achard JM, Desitter I, Houot AM, Fournier A, Corvol P, et al. A new locus on chromosome 12p13.3 for pseudohypoaldosteronism type II, an autosomal dominant form of hypertension. Am J Hum Genet. 2000;67:302–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvol P, et al. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol. 2003;23:9208–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J. 2005;391:17–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Chavez-Canales M, Zhang C, Soukaseum C, Moreno E, Pacheco-Alvarez D, Vidal-Petiot E, et al. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4. Hypertension 2014;64:1047–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012;44:456–60. S451–53

    CAS  PubMed  Google Scholar 

  15. 15.

    Sohara E, Uchida S. Kelch-like 3/Cullin 3 ubiquitin ligase complex and WNK signaling in salt-sensitive hypertension and electrolyte disorder. Nephrol Dial Transpl. 2016;31:1417–24.

    CAS  Google Scholar 

  16. 16.

    Sherwood L. Human physiology: from cells to systems. 9th ed. Boston, MA, USA: Cengage Learning; 2016. p. 1. Volume (various pagings).

  17. 17.

    Moes AD, van der Lubbe N, Zietse R, Loffing J, Hoorn EJ. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflug Arch. 2014;466:107–18.

    CAS  Google Scholar 

  18. 18.

    Gamba G. The thiazide-sensitive Na+-Cl cotransporter: molecular biology, functional properties, and regulation by WNKs. Am J Physiol Ren Physiol. 2009;297:F838–48.

    CAS  Google Scholar 

  19. 19.

    Arroyo JP, Kahle KT, Gamba G. The SLC12 family of electroneutral cation-coupled chloride cotransporters. Mol Asp Med. 2013;34:288–98.

    CAS  Google Scholar 

  20. 20.

    Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, et al. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet. 2003;35:372–6.

    CAS  PubMed  Google Scholar 

  21. 21.

    Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest. 2003;111:1039–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kahle KT, Macgregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, et al. Paracellular Cl permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. Proc Natl Acad Sci USA. 2004;101:14877–82.

    CAS  PubMed  Google Scholar 

  23. 23.

    de Los Heros P, Alessi DR, Gourlay R, Campbell DG, Deak M, Macartney TJ, et al. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl co-transporters. Biochem J. 2014;458:559–73.

    PubMed  Google Scholar 

  24. 24.

    Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S, Natsume T, et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem. 2005;280:42685–93.

    CAS  PubMed  Google Scholar 

  25. 25.

    Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev. 2012;92:1577–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Piechotta K, Lu J, Delpire E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem. 2002;277:50812–9.

    CAS  PubMed  Google Scholar 

  27. 27.

    Shekarabi M, Zhang J, Khanna AR, Ellison DH, Delpire E, Kahle KT. WNK kinase signaling in ion homeostasis and human disease. Cell Metab. 2017;25:285–99.

    CAS  PubMed  Google Scholar 

  28. 28.

    Richardson C, Alessi DR. The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci. 2008;121:3293–304.

    CAS  PubMed  Google Scholar 

  29. 29.

    Dhiani BA, Mehellou Y. The Cul4-DDB1-WDR3/WDR6 complex binds SPAK and OSR1 kinases in a phosphorylation-dependent manner. Chembiochem. 2020;21:638–43.

    CAS  PubMed  Google Scholar 

  30. 30.

    Filippi BM, de los Heros P, Mehellou Y, Navratilova I, Gourlay R, Deak M, et al. MO25 is a master regulator of SPAK/OSR1 and MST3/MST4/YSK1 protein kinases. EMBO J. 2011;30:1730–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Alessi DR, Zhang J, Khanna A, Hochdorfer T, Shang Y, Kahle KT. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Sci Signal. 2014;7:re3.

    PubMed  Google Scholar 

  32. 32.

    Zhang J, Siew K, Macartney T, O’Shaughnessy KM, Alessi DR. Critical role of the SPAK protein kinase CCT domain in controlling blood pressure. Hum Mol Genet. 2015;24:4545–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, et al. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med. 2010;2:63–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Ohta A, Schumacher FR, Mehellou Y, Johnson C, Knebel A, Macartney TJ, et al. The CUL3-KLHL3 E3 ligase complex mutated in Gordon’s hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J. 2013;451:111–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ferdaus MZ, McCormick JA. The CUL3/KLHL3-WNK-SPAK/OSR1 pathway as a target for antihypertensive therapy. Am J Physiol Ren Physiol. 2016;310:F1389–96.

    CAS  Google Scholar 

  36. 36.

    Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG. Sequence and structural analysis of BTB domain proteins. Genome Biol. 2005;6:R82.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K, Araki Y, et al. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 2013;3:858–68.

    CAS  PubMed  Google Scholar 

  38. 38.

    Hadchouel J, Ellison DH, Gamba G. Regulation of renal electrolyte transport by WNK and SPAK-OSR1 kinases. Annu Rev Physiol. 2016;78:367–89.

    CAS  PubMed  Google Scholar 

  39. 39.

    Vidal-Petiot E, Elvira-Matelot E, Mutig K, Soukaseum C, Baudrie V, Wu S, et al. WNK1-related Familial Hyperkalemic Hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. Proc Natl Acad Sci USA. 2013;110:14366–71.

    CAS  PubMed  Google Scholar 

  40. 40.

    Tobin MD, Raleigh SM, Newhouse S, Braund P, Bodycote C, Ogleby J, et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation. 2005;112:3423–9.

    CAS  PubMed  Google Scholar 

  41. 41.

    Putku M, Kepp K, Org E, Sober S, Comas D, Viigimaa M, et al. Novel polymorphic AluYb8 insertion in the WNK1 gene is associated with blood pressure variation in Europeans. Hum Mutat. 2011;32:806–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Newhouse S, Farrall M, Wallace C, Hoti M, Burke B, Howard P, et al. Polymorphisms in the WNK1 gene are associated with blood pressure variation and urinary potassium excretion. PLoS One. 2009;4:e5003.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Guo XG, Ding J, Xu H, Xuan TM, Jin WQ, Yin X, et al. Comprehensive assessment of the association of WNK4 polymorphisms with hypertension: evidence from a meta-analysis. Sci Rep. 2014;4:6507.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ferdaus MZ, McCormick JA. Mechanisms and controversies in mutant Cul3-mediated familial hyperkalemic hypertension. Am J Physiol Ren Physiol. 2018;314:F915–20.

    CAS  Google Scholar 

  45. 45.

    Ibeawuchi SR, Agbor LN, Quelle FW, Sigmund CD. Hypertension-causing mutations in Cullin3 protein impair RhoA protein ubiquitination and augment the association with substrate adaptors. J Biol Chem. 2015;290:19208–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Picard HLD, Latreche S, Thurairajasingam N, Auzan C, Fiquet B, Frayssinet R, et al. Cullin-3 mutations leading to skipping of exon 9 are responsible for severe cases of familial hyperkalaemic hypertension. J Hypertens. 2015;33:E79.

    Google Scholar 

  47. 47.

    McCormick JA, Yang CL, Zhang C, Davidge B, Blankenstein KI, Terker AS, et al. Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3. J Clin Invest. 2014;124:4723–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, et al. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med. 2015;7:1285–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Pelham CJ, Ketsawatsomkron P, Groh S, Grobe JL, de Lange WJ, Ibeawuchi SR, et al. Cullin-3 regulates vascular smooth muscle function and arterial blood pressure via PPARgamma and RhoA/Rho-kinase. Cell Metab. 2012;16:462–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Agbor LN, Ibeawuchi SC, Hu C, Wu J, Davis DR, Keen HL, et al. Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism. JCI Insight. 2016;1:e91015.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, et al. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med. 2015;7:1285–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Farfel Z, Iaina A, Rosenthal T, Waks U, Shibolet S, Gafni J. Familial hyperpotassemia and hypertension accompanied by normal plasma aldosterone levels: possible hereditary cell membrane defect. Arch Intern Med. 1978;138:1828–32.

    CAS  PubMed  Google Scholar 

  53. 53.

    Mayan H, Vered I, Mouallem M, Tzadok-Witkon M, Pauzner R, Farfel Z. Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab. 2002;87:3248–54.

    CAS  PubMed  Google Scholar 

  54. 54.

    Gordon R, Klemm S, Tunny T, Stowasser M. Gordon’s syndrome: a sodium-volume dependent form of hypertension with a genetic basis. In: Laragh J, Brenner B, editors. Hypertension: pathophysiology, diagnosis, and management. 2nd ed. New York: Raven Press; 1995. p. 2111–23.

  55. 55.

    Ellison DH, Velazquez H, Wright FS. Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol. 1987;253:F546–54.

    CAS  PubMed  Google Scholar 

  56. 56.

    Duarte JD, Cooper-DeHoff RM. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert Rev Cardiovasc Ther. 2010;8:793–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Morsing P, Velazquez H, Wright FS, Ellison DH. Adaptation of distal convoluted tubule of rats. II. Eff chronic thiazide Infus Am J Physiol. 1991;261:F137–43.

    CAS  Google Scholar 

  58. 58.

    Sica DA. Diuretic-related side effects: development and treatment. J Clin Hypertens (Greenwich). 2004;6:532–40.

    Google Scholar 

  59. 59.

    Maitland-van der Zee AH, Turner ST, Schwartz GL, Chapman AB, Klungel OH, Boerwinkle E. Demographic, environmental, and genetic predictors of metabolic side effects of hydrochlorothiazide treatment in hypertensive subjects. Am J Hypertens. 2005;18:1077–83.

    CAS  PubMed  Google Scholar 

  60. 60.

    Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, et al. Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension. 2008;51:1658–64.

    CAS  PubMed  Google Scholar 

  61. 61.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, et al. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci USA. 2003;100:14109–14.

    PubMed  Google Scholar 

  62. 62.

    Susa K, Kita S, Iwamoto T, Yang SS, Lin SH, Ohta A, et al. Effect of heterozygous deletion of WNK1 on the WNK-OSR1/ SPAK-NCC/NKCC1/NKCC2 signal cascade in the kidney and blood vessels. Clin Exp Nephrol. 2012;16:530–8.

    CAS  PubMed  Google Scholar 

  63. 63.

    Bergaya S, Faure S, Baudrie V, Rio M, Escoubet B, Bonnin P, et al. WNK1 regulates vasoconstriction and blood pressure response to alpha 1-adrenergic stimulation in mice. Hypertension. 2011;58:439–45.

    CAS  PubMed  Google Scholar 

  64. 64.

    Wang Y, O’Connell JR, McArdle PF, Wade JB, Dorff SE, Shah SJ, et al. From the Cover: whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci USA. 2009;106:226–31.

    CAS  PubMed  Google Scholar 

  65. 65.

    Takahashi D, Mori T, Nomura N, Khan MZ, Araki Y, Zeniya M, et al. WNK4 is the major WNK positively regulating NCC in the mouse kidney. Biosci Rep. 2014;34:e00107.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Castaneda-Bueno M, Cervantes-Perez LG, Vazquez N, Uribe N, Kantesaria S, Morla L, et al. Activation of the renal Na+:Cl cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci USA. 2012;109:7929–34.

    CAS  PubMed  Google Scholar 

  67. 67.

    Min X, Lee BH, Cobb MH, Goldsmith EJ. Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure. 2004;12:1303–11.

    CAS  PubMed  Google Scholar 

  68. 68.

    Yamada K, Park HM, Rigel DF, DiPetrillo K, Whalen EJ, Anisowicz A, et al. Small-molecule WNK inhibition regulates cardiovascular and renal function. Nat Chem Biol. 2016;12:896–8.

    CAS  PubMed  Google Scholar 

  69. 69.

    Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, et al. The protein data bank. Acta Crystallogr D Biol Crystallogr. 2002;58:899–907.

    PubMed  Google Scholar 

  70. 70.

    Rodan AR, Jenny A. WNK kinases in development and disease. Curr Top Dev Biol. 2017;123:1–47.

    CAS  PubMed  Google Scholar 

  71. 71.

    Zhang J, Bhuiyan MIH, Zhang T, Karimy JK, Wu Z, Fiesler VM, et al. Modulation of brain cation-Cl cotransport via the SPAK kinase inhibitor ZT-1a. Nat Commun. 2020;11:78.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Yamada K, Zhang JH, Xie X, Reinhardt J, Xie AQ, LaSala D, et al. Discovery and characterization of allosteric WNK kinase inhibitors. ACS Chem Biol. 2016;11:3338–46.

    CAS  PubMed  Google Scholar 

  73. 73.

    Yamada K, Levell J, Yoon T, Kohls D, Yowe D, Rigel DF, et al. Optimization of allosteric with-no-lysine (WNK) kinase inhibitors and efficacy in rodent hypertension models. J Med Chem. 2017;60:7099–107.

    CAS  PubMed  Google Scholar 

  74. 74.

    Pinkas D, Bufton J, Bartual S, Chen Z, Daubner G, Schumacher F, et al. Human with no lysine kinase 3 (WNK3); a target enabling package. 2017.

  75. 75.

    Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol. 2008;4:691–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Dunna NR, Kandula V, Girdhar A, Pudutha A, Hussain T, Bandaru S, et al. High affinity pharmacological profiling of dual inhibitors targeting RET and VEGFR2 in inhibition of kinase and angiogeneis events in medullary thyroid carcinoma. Asian Pac J Cancer Prev. 2015;16:7089–95.

    PubMed  Google Scholar 

  77. 77.

    Zhou Z, Chen X, Chen X, Qin A, Mao Y, Pang Y, et al. PP121 suppresses RANKL-Induced osteoclast formation in vitro and LPS-Induced bone resorption in vivo. Exp Cell Res. 2020;388:111857.

    CAS  PubMed  Google Scholar 

  78. 78.

    Kuenemann MA, Fourches D. Cheminformatics analysis of dynamic WNK-inhibitor interactions. Mol Inf. 2018;37:e1700138.

    Google Scholar 

  79. 79.

    Lin SH, Yu IS, Jiang ST, Lin SW, Chu P, Chen A, et al. Impaired phosphorylation of Na+-K+-2Cl cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc Natl Acad Sci USA. 2011;108:17538–43.

    CAS  PubMed  Google Scholar 

  80. 80.

    Yang SS, Lo YF, Wu CC, Lin SW, Yeh CJ, Chu P, et al. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol. 2010;21:1868–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Kikuchi E, Mori T, Zeniya M, Isobe K, Ishigami-Yuasa M, Fujii S, et al. Discovery of novel spak inhibitors that block WNK kinase signaling to cation chloride transporters. J Am Soc Nephrol. 2015;26:1525–36.

    CAS  PubMed  Google Scholar 

  82. 82.

    AlAmri MA, Kadri H, Alderwick LJ, Simpkins NS, Mehellou Y. Rafoxanide and closantel inhibit SPAK and OSR1 kinases by binding to a highly conserved allosteric site on their C-terminal domains. ChemMedChem. 2017;12:639–45.

    CAS  PubMed  Google Scholar 

  83. 83.

    AlAmri MA, Kadri H, Alderwick LJ, Jeeves M, Mehellou Y. The photosensitising clinical agent verteporfin is an inhibitor of SPAK and OSR1 kinases. Chembiochem. 2018;19:2072–80.

    CAS  PubMed  Google Scholar 

  84. 84.

    Charisis SK, Naoumidi II, Ginis HS, Detorakis ET, Tsilimbaris MK. Contact transcleral ciliary body photodynamic therapy with verteporfin in pigmented rabbits: effect of repeated treatments. Photochem Photobio. 2010;86:194–9.

    CAS  Google Scholar 

  85. 85.

    de Los Heros P, Alessi DR, Gourlay R, Campbell DG, Deak M, Macartney TJ, et al. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl co-transporters. Biochem J. 2014;458:559–73.

    PubMed  Google Scholar 

  86. 86.

    Stein V, Nicoll RA. GABA generates excitement. Neuron. 2003;37:375–8.

    CAS  PubMed  Google Scholar 

  87. 87.

    Kahle KT, Rinehart J, de Los Heros P, Louvi A, Meade P, Vazquez N, et al. WNK3 modulates transport of Cl in and out of cells: implications for control of cell volume and neuronal excitability. Proc Natl Acad Sci USA. 2005;102:16783–8.

    CAS  PubMed  Google Scholar 

  88. 88.

    Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, et al. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest. 2015;125:2136–50.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Mori T, Kikuchi E, Watanabe Y, Fujii S, Ishigami-Yuasa M, Kagechika H, et al. Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy. Biochem J. 2013;455:339–45.

    CAS  PubMed  Google Scholar 

  90. 90.

    Kadri H, Alamri MA, Navratilova IH, Alderwick LJ, Simpkins NS, Mehellou Y. Towards the development of small-molecule MO25 binders as potential indirect SPAK/OSR1 kinase inhibitors. Chembiochem. 2017;18:460–5.

    CAS  PubMed  Google Scholar 

Download references


This study was in part supported by the University of Exeter Medical School start-up fund (JZ) and the National Natural Science Foundation of China 81970238 (JZ).

Author information



Corresponding author

Correspondence to Jinwei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brown, A., Meor Azlan, N.F., Wu, Z. et al. WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension. Acta Pharmacol Sin 42, 508–517 (2021).

Download citation


  • WNK kinase
  • SPAK kinase
  • sodium chloride cotransporter NCC
  • chloride (Cl) homeostasis
  • Gordon’s hypertension syndrome
  • therapeutic target.

Further reading


Quick links