Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells


Sorafenib is currently the standard chemotherapy drug for treatment of advanced hepatocellular carcinoma (HCC). But its efficacy requires improvement, it is imperative to seek therapeutic strategies that combine sorafenib with other anticancer agents. In this study we investigated the synergistic anticancer effect of combining sorafenib and artesunate, an anti-malaria drug derivative, against HCC in vitro and in vivo. We first showed that artesunate (1–100 μM) alone dose-dependently inhibited the proliferation of five HCC cell lines tested with IC50 values of around 100 μM. Artesunate treatment dose-dependently increased the ROS level in both HuH7 and Hep3B cells; addition of NAC significantly ameliorated the antiproliferation effect of artesunate against HuH7 and Hep3B cells. Then we demonstrated that combination of sorafenib and artesunate exerted synergistic antiproliferation effect and induced synergistic apoptosis in HCC cell lines. In nude mice bearing Hep3B xenografts, combined administration of sorafenib and artesunate significantly enhanced the suppression on tumor growth. We further revealed that sorafenib dose-dependently decreased the levels of p-ERK and p-STAT3, whereas artesunate markedly increased the levels of p-ERK and p-STAT3 in HuH7 and Hep3B cells. When used in combination, sorafenib abolished artesunate-elevated levels of p-STAT3 and p-ERK. Moreover, pharmacological inhibition of ERK by inhibitor PD0325901 or STAT3 by inhibitor Stattic markedly enhanced the anticancer activity of artesunate, suggesting that suppression of ERK and STAT3 signaling by sorafenib contributes to the synergistic anticancer activity against HCC caused by combination of sorafenib and artesunate. Taken together, our results provide an evidence for possible use of sorafenib plus artesunate or artemisinin analogs for treatment of HCC in the future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Kanwal F, Singal AG. Surveillance for HCC: current best practice and future direction. Gastroenterology. 2019;157:54–64.

    Article  Google Scholar 

  2. 2.

    Song P, Cai Y, Tang H, Li C, Huang J. The clinical management of hepatocellular carcinoma worldwide: a concise review and comparison of current guidelines from 2001 to 2017. Biosci Trends. 2017;11:389–98.

  3. 3.

    Sun Z, Zhu Y, Aminbuhe, Fan Q, Peng J, Zhang N. Differential expression of APE1 in hepatocellular carcinoma and the effects on proliferation and apoptosis of cancer cells. Biosci Trends. 2018;12:456–62.

    CAS  Article  Google Scholar 

  4. 4.

    Yan X, Qiu Y. Impact of current staging systems on treatment strategy for HBV-related hepatocellular carcinoma. Cancer Lett. 2016;379:220–4.

    CAS  Article  Google Scholar 

  5. 5.

    Gao J, Song P. Combination of triple biomarkers AFP, AFP-L3, and PIVAKII for early detection of hepatocellular carcinoma in China: expectation. Drug Disco Ther. 2017;11:168–9.

    CAS  Article  Google Scholar 

  6. 6.

    Dimitroulis D, Damaskos C, Valsami S, Davakis S, Garmpis N, Spartalis E, et al. From diagnosis to treatment of hepatocellular carcinoma: an epidemic problem for both developed and developing world. World J Gastroenterol. 2017;23:5282–94.

    Article  Google Scholar 

  7. 7.

    Qi F, Wang J, Zhao L, Cai P, Tang W, Wang Z. Cinobufacini inhibits epithelial-mesenchymal transition of human hepatocellular carcinoma cells through c-Met/ERK signaling pathway. Biosci Trends. 2018;12:291–7.

    CAS  Article  Google Scholar 

  8. 8.

    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    CAS  Article  Google Scholar 

  9. 9.

    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    CAS  Article  Google Scholar 

  10. 10.

    Peng Y, Li Q, Zhang J, Shen W, Zhang X, Sun C, et al. Update review of skin adverse events during treatment of lung cancer and colorectal carcinoma with epidermal growth receptor factor inhibitors. Biosci Trends. 2019;12:537–52.

    CAS  Article  Google Scholar 

  11. 11.

    Elket N, Kendjo E, Thellier M, Assoumou L, Potard V, Taieb A, et al. Propensity score analysis of artesunate versus quinine for severe imported Plasmodium falciparum malaria in France. Clin Infect Dis. 2020;70:280–7.

    Article  Google Scholar 

  12. 12.

    Krishna S, Ganapathi S, Ster IC, Saeed ME, Cowan M, Finlayson C, et al. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine. 2015;2:82–90.

    Article  Google Scholar 

  13. 13.

    Vatsveen TK, Myhre MR, Steen CB, Walchli S, Lingjaerde OC, Bai B, et al. Artesunate shows potent anti-tumor activity in B-cell lymphoma. J Hematol Oncol. 2018;11:23.

    Article  Google Scholar 

  14. 14.

    Sun X, Yan P, Zou C, Wong YK, Shu Y, Lee YM, et al. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives. Med Res Rev. 2019;39:2172–93.

    Article  Google Scholar 

  15. 15.

    Ilamathi M, Santhosh S, Sivaramakrishnan V. Artesunate as an anti-cancer agent targets Stat-3 and favorably suppresses hepatocellular carcinoma. Curr Top Med Chem. 2016;16:2453–63.

    CAS  Article  Google Scholar 

  16. 16.

    Vandewynckel YP, Laukens D, Geerts A, Vanhove C, Descamps B, Colle I, et al. Therapeutic effects of artesunate in hepatocellular carcinoma: repurposing an ancient antimalarial agent. Eur J Gastroenterol Hepatol. 2014;26:861–70.

    CAS  Article  Google Scholar 

  17. 17. (2019).

  18. 18.

    Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin CS, Fleckenstein L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J. 2011;10:263.

    CAS  Article  Google Scholar 

  19. 19.

    Greenshields AL, Fernando W, Hoskin DW. The anti-malarial drug artesunate causes cell cycle arrest and apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3 breast cancer cells. Exp Mol Pathol. 2019;107:10–22.

    CAS  Article  Google Scholar 

  20. 20.

    Zhang SS, Ni YH, Zhao CR, Qiao Z, Yu HX, Wang LY, et al. Capsaicin enhances the antitumor activity of sorafenib in hepatocellular carcinoma cells and mouse xenograft tumors through increased ERK signaling. Acta Pharmacol Sin. 2018;39:438–48.

    CAS  Article  Google Scholar 

  21. 21.

    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    CAS  Article  Google Scholar 

  22. 22.

    Moriguchi M, Umemura A, Itoh Y. Current status and future prospects of chemotherapy for advanced hepatocellular carcinoma. Clin J Gastroenterol. 2016;9:184–90.

    Article  Google Scholar 

  23. 23.

    Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24:4293–300.

    CAS  Article  Google Scholar 

  24. 24.

    Tai WT, Cheng AL, Shiau CW, Huang HP, Huang JW, Chen PJ, et al. Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol. 2011;55:1041–8.

    CAS  Article  Google Scholar 

  25. 25.

    Huynh H, Nguyen TT, Chow KH, Tan PH, Soo KC, Tran E. Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol. 2003;3:19.

    Article  Google Scholar 

  26. 26.

    He G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T, et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell. 2010;17:286–97.

    CAS  Article  Google Scholar 

  27. 27.

    Sertel S, Eichhorn T, Simon CH, Plinkert PK, Johnson SW, Efferth T. Pharmacogenomic identification of c-Myc/Max-regulated genes associated with cytotoxicity of artesunate towards human colon, ovarian and lung cancer cell lines. Molecules. 2010;15:2886–910.

    CAS  Article  Google Scholar 

  28. 28.

    Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor research on artemisinin and its bioactive derivatives. Nat Prod Bioprospect. 2018;8:303–19.

    Article  Google Scholar 

  29. 29.

    Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194:7–15.

    CAS  Article  Google Scholar 

  30. 30.

    Khan AI, Kapoor A, Che J, Martin L, Rogazzo M, Mercier T, et al. The anti-malarial drug artesunate attenuates cardiac injury in a rodent model of myocardial infarction. Shock 2017.

  31. 31.

    Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–62.

  32. 32.

    Kundu J, Kim DH, Chae IG, Lee JK, Lee S, Jeong CH, et al. Silicon dioxide nanoparticles induce COX-2 expression through activation of STAT3 signaling pathway in HaCaT cells. Toxicol Vitr. 2018;52:235–42.

    CAS  Article  Google Scholar 

  33. 33.

    Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997;272:217–21.

    CAS  Article  Google Scholar 

Download references


This project was supported by grants from the National Natural Science Foundation of China (81503094, 81573410, and 81603071), the China Postdoctoral Science Foundation (2016M600524), and the Qingdao Postdoctoral Applied Research Project (2016072; Jian-jun Gao, Qingdao University).

Author information




JJG conceived and designed the study. XY, CRZ, and HY performed the study. XY and CRZ collected and analyzed the data. JJG and KWW prepared the article.

Corresponding author

Correspondence to Jian-jun Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Zhao, C., Yin, H. et al. Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells. Acta Pharmacol Sin (2020).

Download citation


  • sorafenib
  • ERK
  • artemisinin
  • ROS
  • hepatocellular carcinoma
  • STAT3