Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combining familial hypercholesterolemia and statin genetic studies as a strategy for the implementation of pharmacogenomics. A multidisciplinary approach

Abstract

The diagnostic process of familial hypercholesterolemia frequently involves the use of genetic studies. Patients are treated with lipid-lowering drugs, frequently statins. Although pharmacogenomic clinical practice guidelines focusing on genotype-based statin prescription have been published, their use in routine clinical practice remains very modest.

We have implemented a new NGS strategy that combines a panel of genes related to familial hypercholesterolemia with genomic regions related to the pharmacogenomics of lipid-lowering drugs described in clinical practice guidelines and in EMA and FDA drug labels. A multidisciplinary team of doctors, biologists, and pharmacists creates a clinical report that provides diagnostic and therapeutic findings using a knowledge management and clinical decision support system, as well as an algorithm for treatment selection.

For 12 months, a total of 483 genetic diagnostic studies for familial hypercholesterolemia were carried out, of which 221 (45.8%) requested a complementary pharmacogenomic test. Of these 221 patients, 66.5% were carriers of actionable variants in any of the studied pharmacogenomic pathways: 46.6% of patients in one pathway, 19.0% in two pathways, and 0.9% in three pathways. 45.7% of patients could have a response to atorvastatin different from that of the reference population, 45.7% for simvastatin and lovastatin, 29.0% for fluvastatin, and 6.7% patients for pitavastatin.

This implementation approach facilitates the incorporation of pharmacogenomic studies in clinical care practice, it does not add complexity nor additional steps to laboratory processes, and improves the pharmacotherapeutic process of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Decision tree for statin genotype-based prescription.
Fig. 3

Similar content being viewed by others

Data availability

The data used in the analysis of this study is available from the corresponding author on upon request.

References

  1. Hopkins PN, Toth PP, Ballantyne CM, Rader DJ. National Lipid Association Expert Panel on Familial Hypercholesterolemia. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipido. 2011;5:S9–17.

    Article  Google Scholar 

  2. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34:3478–90a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Austin MA, Hutter CM, Zimmern RL, Humphries SE. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol. 2004;160:407–20.

    Article  PubMed  Google Scholar 

  4. The Cardiac Society of Australia and New Zealand. Guidelines for the Diagnosis and Management of Familial Hypercholesterolaemia. https://www.csanz.edu.au/wp-content/uploads/2013/12/Familial_Hypercholesterolemia_2013.pdf (accessed 26 Jul 2020).

  5. NICE The National Institute for Health and Care Excellence. Familial hypercholesterolaemia: identification and management Clinical guideline [CG71]Published date: 27 August 2008 Last updated: 04 October 2019. https://www.nice.org.uk/guidance/CG71 (accessed 26 Jul 2020).

  6. Primary Panel:, Genest J, Hegele RA, Bergeron J, Brophy J, Carpentier A, et al. Canadian Cardiovascular Society position statement on familial hypercholesterolemia. Can J Cardiol. 2014;30:1471–81.

    Article  Google Scholar 

  7. Haase A, Goldberg AC. Identification of people with heterozygous familial hypercholesterolemia. Curr Opin Lipido. 2012;23:282–9.

    Article  CAS  Google Scholar 

  8. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults. Circulation. 2014;129:S1–S45.

    Article  PubMed  Google Scholar 

  9. LaRosa JC, He J, Vupputuri S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA. 1999;282:2340–6.

  10. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ. 2003;326:1423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78.

    Article  CAS  PubMed  Google Scholar 

  12. Alfirevic A, Neely D, Armitage J, Chinoy H, Cooper RG, Laaksonen R, et al. Phenotype standardization for statin-induced myotoxicity. Clin Pharm Ther. 2014;96:470–6.

    Article  CAS  Google Scholar 

  13. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7–22.

    Article  Google Scholar 

  14. Zhang H, Plutzky J, Skentzos S, Morrison F, Mar P, Shubina M, et al. Discontinuation of statins in routine care settings. Ann Intern Med. 2013;158:526.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cohen JD, Brinton EA, Ito MK, Jacobson TA. Understanding statin use in America and gaps in patient education (USAGE): An internet-based survey of 10,138 current and former statin users. J Clin Lipido. 2012;6:208–15.

    Article  Google Scholar 

  16. Bruckert E, Hayem G, Dejager S, Yau C, Bégaud B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients —the PRIMO study. Cardiovasc Drugs Ther. 2005;19:403–14.

    Article  CAS  PubMed  Google Scholar 

  17. Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. JAMA. 2007;297:177.

    Article  CAS  PubMed  Google Scholar 

  18. Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharm Ther. 2014;96:423–8.

    Article  CAS  Google Scholar 

  19. Dutch Pharmacogenetics Working Group. Dutch Pharmacogenetics Working Group Guidelines August 2019.

  20. Lamoureux F, Duflot T. Pharmacogenetics in cardiovascular diseases: State of the art and implementation-recommendations of the French National Network of Pharmacogenetics (RNPGx). Therapie. 2017;72:257–67.

    Article  PubMed  Google Scholar 

  21. FDA - U.S. Food and Drug Administration). FDA Drug Safety Communication: New restrictions, contraindications, and dose limitations for Zocor (simvastatin) to reduce the risk of muscle injury. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-restrictions-contraindications-and-dose-limitations-zocor (accessed 26 Jul 2020).

  22. Buzková H, Pechandová K, Danzig V, Vareka T, Perlik F, Zak A, et al. Lipid-lowering effect of fluvastatin in relation to cytochrome P450 2C9 variant alleles frequently distributed in the Czech population. Med Sci Monit. 2012;18:CR512–517.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pratt VM, Everts RE, Aggarwal P, Beyer BN, Broeckel U, Epstein-Baak R, et al. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes. J Mol Diagnostics. 2016;18:109–23.

    Article  CAS  Google Scholar 

  24. Pratt VM, Zehnbauer B, Wilson JA, Baak R, Babic N, Bettinotti M, et al. Characterization of 107 genomic DNA reference materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1. J Mol Diagnostics. 2010;12:835–46.

    Article  CAS  Google Scholar 

  25. Ortiz-Genga MF, Cuenca S, Dal Ferro M, Zorio E, Salgado-Aranda R, Climent V, et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J Am Coll Cardiol. 2016;68:2440–51.

    Article  CAS  PubMed  Google Scholar 

  26. Ochoa JP, Sabater-Molina M, García-Pinilla JM, Mogensen J, Restrepo-Córdoba A, Palomino-Doza J, et al. Formin homology 2 domain containing 3 (FHOD3) is a genetic basis for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2018;72:2457–67.

    Article  CAS  PubMed  Google Scholar 

  27. Ramudo-Cela L, López-Martí JM, Colmeiro-Echeberría D, De-Uña-Iglesias D, Santomé-Collazo JL, Monserrat-Iglesias L. Development and validation of a next-generation sequencing panel for clinical pharmacogenetics. Farm Hosp. 2020;44:243–53.

    PubMed  Google Scholar 

  28. Gaedigk A, Turner A, Everts RE, Scott SA, Aggarwal P, Broeckel U, et al. Characterization of reference materials for genetic testing of CYP2D6 alleles. J Mol Diagnostics. 2019;21:1034–52.

    Article  CAS  Google Scholar 

  29. Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med. 2017;19:215–23.

    Article  PubMed  Google Scholar 

  30. Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and dutch pharmacogenetics working group. Clin Transl Sci. 2020;13:116–24.

    Article  PubMed  Google Scholar 

  31. Gaedigk A, Sangkuhl K, Whirl‐Carrillo M, Twist GP, Klein TE, Miller NA. The evolution of PharmVar. Clin Pharm Ther. 2019;105:29–32.

    Article  Google Scholar 

  32. Kalman LVL, Agúndez JAG, Appell ML, Black JLJ, Bell GCG, Boukouvala S, et al. Pharmacogenetic allele nomenclature: international workgroup recommendations for test result reporting. Clin Pharm Ther. 2016;99:172–85.

    Article  CAS  Google Scholar 

  33. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharm Ther. 2012;92:414–7.

    Article  CAS  Google Scholar 

  34. McInnes G, Lavertu A, Sangkuhl K, Klein TE, Whirl‐Carrillo M, Altman RB. Pharmacogenetics at scale: an analysis of the UK biobank. Clin Pharm Ther. 2021;109:1528–37.

    Article  Google Scholar 

  35. Gordon AS, Fulton RS, Qin X, Mardis ER, Nickerson DA, Scherer S. PGRNseq. Pharmacogenet Genomics. 2016;26:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M, Kyrklund C, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics. 2004;14:429–40.

    Article  CAS  PubMed  Google Scholar 

  37. Tirona RG, Leake BF, Merino G, Kim RB. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem. 2001;276:35669–75.

    Article  CAS  PubMed  Google Scholar 

  38. Ramsey LB, Bruun GH, Yang W, Treviño LR, Vattathil S, Scheet P, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Derrien T, Estellé J, Sola SM, Knowles DG, Raineri E, Guigó R, et al. Fast computation and applications of genome mappability. PLoS One. 2012;7:e30377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Driest SL, Shi Y, Bowton EA, Schildcrout JS, Peterson JF, Pulley J, et al. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin Pharm Ther. 2014;95:423–31.

    Article  CAS  Google Scholar 

  42. Hocum BT, White JR, Heck JW, Thirumaran RK, Moyer N, Newman R, et al. Cytochrome P-450 gene and drug interaction analysis in patients referred for pharmacogenetic testing. Am J Health Syst Pharm. 2016;73:61–7.

    Article  CAS  PubMed  Google Scholar 

  43. SEARCH Collaborative Group, Link E, Parish S, Armitage J, Bowman L, Heath S, et al. SLCO1B1 variants and statin-induced myopathy-a genomewide study. N. Engl J Med. 2008;359:789–99.

    Article  Google Scholar 

  44. Heart Protection Study Collaborative Group. Effects on 11-year mortality and morbidity of lowering LDL cholesterol with simvastatin for about 5 years in 20,536 high-risk individuals: a randomised controlled trial. Lancet. 2011;378:2013–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Voora D, Shah SH, Spasojevic I, Ali S, Reed CR, Salisbury BA, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol. 2009;54:1609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Danik JS, Chasman DI, MacFadyen JG, Nyberg F, Barratt BJ, Ridker PM. Genetics: Lack of association between slco1b1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am Heart J. 2013;165:1008–14.

    Article  CAS  PubMed  Google Scholar 

  47. Roden DM, Van Driest SL, Mosley JD, Wells QS, Robinson JR, Denny JC, et al. Benefit of preemptive pharmacogenetic information on clinical outcome. Clin Pharm Ther. 2018;103:787–94.

    Article  Google Scholar 

  48. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11:274–86.

    Article  PubMed  CAS  Google Scholar 

  49. Kitzmiller JP, Luzum JA, Baldassarre D, Krauss RM, Medina MW. CYP3A4*22 and CYP3A5*3 are associated with increased levels of plasma simvastatin concentrations in the cholesterol and pharmacogenetics study cohort. Pharmacogenet Genomics. 2014;24:486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharm Ther. 2021;110:563–72.

    Article  Google Scholar 

  51. Lamba J, Hebert JM, Schuetz EG, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet Genomics. 2012;22:555–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiang Q, Chen S, Ma L, Hu K, Zhang Z, Mu G, et al. Association between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: a meta-analysis. Pharmacogenomics J. 2018;18:721–9.

    Article  CAS  PubMed  Google Scholar 

  53. Just KS, Steffens M, Swen JJ, Patrinos GP, Guchelaar H-J, Stingl JC. Medical education in pharmacogenomics—results from a survey on pharmacogenetic knowledge in healthcare professionals within the European pharmacogenomics clinical implementation project Ubiquitous Pharmacogenomics (U-PGx). Eur J Clin Pharm. 2017;73:1247–1252. https://doi.org/10.1007/s00228-017-2292-5.

    Article  Google Scholar 

  54. Peterson JF, Field JR, Shi Y, Schildcrout JS, Denny JC, McGregor TL, et al. Attitudes of clinicians following large-scale pharmacogenomics implementation. Pharmacogenomics J. 2016;16:393–8.

    Article  CAS  PubMed  Google Scholar 

  55. Kozyra M, Ingelman-Sundberg M, Lauschke VM. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet Med. 2017;19:20–29.

    Article  CAS  PubMed  Google Scholar 

  56. Lauschke VM, Ingelman-Sundberg M. How to consider rare genetic variants in personalized drug therapy. Clin Pharm Ther. 2018;103:745–8.

    Article  Google Scholar 

  57. Su J, Xu H, Yang J, Yu Q, Yang S, Zhang J, et al. ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: a meta-analysis. Lipids Health Dis. 2015;14:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LR—originated the research, wrote, reviewed, and edited manuscript. SS, MG, MG, PV, JLS, AG, PC screened records, extracted data, analyzed data, wrote original draft. JLH, CG, PG, PR, JG reviewed and edited the manuscript. DG, MO, LM supervised the project, verified data, interpreted results, reviewed, and edited the manuscript. All authors were involved in drafting the manuscript. All authors approved the final version of the manuscript for submission and agree to be accountable for the information provided in the manuscript

Corresponding author

Correspondence to Luis Ramudo-Cela.

Ethics declarations

Competing interests

LRC, SSM, MGR, MB, DGG, PVV, LSC, AGF, PCC are employees of Health in Code SL. LMI receives personal fees from Health in Code SL.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramudo-Cela, L., Santana-Martínez, S., García-Ramos, M. et al. Combining familial hypercholesterolemia and statin genetic studies as a strategy for the implementation of pharmacogenomics. A multidisciplinary approach. Pharmacogenomics J 22, 180–187 (2022). https://doi.org/10.1038/s41397-022-00274-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-022-00274-8

Search

Quick links