Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Appraisal and development of evidence-based clinical decision support to enable perioperative pharmacogenomic application

Abstract

Variable responses to medications complicates perioperative care. As a potential solution, we evaluated and synthesized pharmacogenomic evidence that may inform anesthesia and pain prescribing to identify clinically actionable drug/gene pairs. Clinical decision-support (CDS) summaries were developed and were evaluated using Appraisal of Guidelines for Research and Evaluation (AGREE) II. We found that 93/180 (51%) of commonly-used perioperative medications had some published pharmacogenomic information, with 18 having actionable evidence: celecoxib/diclofenac/flurbiprofen/ibuprofen/piroxicam/CYP2C9, codeine/oxycodone/tramadol CYP2D6, desflurane/enflurane/halothane/isoflurane/sevoflurane/succinylcholine/RYR1/CACNA1S, diazepam/CYP2C19, phenytoin/CYP2C9, succinylcholine/mivacurium/BCHE, and morphine/OPRM1. Novel CDS summaries were developed for these 18 medications. AGREE II mean ± standard deviation scores were high for Scope and Purpose (95.0 ± 2.8), Rigor of Development (93.2 ± 2.8), Clarity of Presentation (87.3 ± 3.0), and Applicability (86.5 ± 3.7) (maximum score = 100). Overall mean guideline quality score was 6.7 ± 0.2 (maximum score = 7). All summaries were recommended for clinical implementation. A critical mass of pharmacogenomic evidence exists for select medications commonly used in the perioperative setting, warranting prospective examination for clinical utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Article evaluation process.
Fig. 2: Published pharmacogenomic articles per perioperative medication by FDA approval year.
Fig. 3: Clinical decision-support summaries for sevoflurane and succinylcholine.

Similar content being viewed by others

References

  1. Zheng SL, Sun J, Wiklund F, Gao Z, Stattin P, Purcell LD, et al. Genetic variants and family history predict prostate cancer similar to prostate-specific antigen. Clin Cancer Res. 2009;15:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nanji KC, Patel A, Shaikh S, Seger DL, Bates DW. Evaluation of perioperative medication errors and adverse drug events. Anesthesiology. 2016;124:25–34.

    Article  CAS  PubMed  Google Scholar 

  3. Weiss AJ, Elixhauser A, Bae J, Encinosa W. Origin of adverse drug events in U.S. Hospitals, 2011: Statistical Brief #158. Rockville (MD): Healthcare Cost and Utilization Project (HCUP) Statistical Briefs; 2006.

  4. Wu CL, Raja SN. Treatment of acute postoperative pain. Lancet. 2011;377:2215–25.

    Article  CAS  PubMed  Google Scholar 

  5. Mavridou P, Dimitriou V, Manataki A, Arnaoutoglou E, Papadopoulos G. Patient’s anxiety and fear of anesthesia: effect of gender, age, education, and previous experience of anesthesia. A survey of 400 patients. J Anesth. 2013;27:104–8.

    Article  PubMed  Google Scholar 

  6. Denborough MA. Malignant hyperthermia. 1962. Anesthesiology. 2008;108:156–7.

    Article  PubMed  Google Scholar 

  7. Sangkuhl K, Dirksen RT, Alvarellos ML, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for CACNA1S. Pharmacogenet Genom. 2020;30:34–44.

    Article  CAS  Google Scholar 

  8. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526:343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalow W. Pharmacogenetics and anesthesia. J Am Soc Anesthesiol. 1964;25:377–87.

    Article  CAS  Google Scholar 

  10. Hopkins PM, Ruffert H, Snoeck MM, Girard T, Glahn KP, Ellis FR, et al. European malignant hyperthermia group guidelines for investigation of malignant hyperthermia susceptibility. Br J Anaesth. 2015;115:531–9.

    Article  CAS  PubMed  Google Scholar 

  11. Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther. 2011;89:464–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van der Wouden CH, Cambon-Thomsen A, Cecchin E, Cheung KC, Davila-Fajardo CL, Deneer VH, et al. Implementing pharmacogenomics in europe: design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin Pharmacol Ther. 2017;101:341–58.

    Article  PubMed  Google Scholar 

  13. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92:414–7.

    Article  CAS  PubMed  Google Scholar 

  14. Swen JJ, Wilting I, de Goede AL, Grandia L, Mulder H, Touw DJ, et al. Pharmacogenetics: from bench to byte. Clin Pharmacol Ther. 2008;83:781–7.

    Article  CAS  PubMed  Google Scholar 

  15. Borden BA, Galecki P, Wellmann R, Danahey K, Lee SM, Patrick-Miller L, et al. Assessment of provider-perceived barriers to clinical use of pharmacogenomics during participation in an institutional implementation study. Pharmacogenet Genom. 2019;29:31–8.

    Article  CAS  Google Scholar 

  16. McKinnon RA, Ward MB, Sorich MJ. A critical analysis of barriers to the clinical implementation of pharmacogenomics. Ther Clin Risk Manag. 2007;3:751–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wellmann R, Borden BA, Danahey K, Nanda R, Polite BN, Stadler WM, et al. Analyzing the clinical actionability of germline pharmacogenomic findings in oncology. Cancer. 2018;124:3052–65.

  18. Kaufman AL, Spitz J, Jacobs M, Sorrentino M, Yuen S, Danahey K, et al. Evidence for clinical implementation of pharmacogenomics in cardiac drugs. Mayo Clin Proc. 2015;90:716–29.

    Article  CAS  PubMed  Google Scholar 

  19. Hussain S, Kenigsberg BB, Danahey K, Lee YM, Galecki PM, Ratain MJ, et al. Disease-drug database for pharmacogenomic-based prescribing. Clin Pharmacol Ther. 2016;100:179–90.

    Article  CAS  PubMed  Google Scholar 

  20. Danahey K, Borden BA, Furner B, Yukman P, Hussain S, Saner D, et al. Simplifying the use of pharmacogenomics in clinical practice: building the genomic prescribing system. J Biomed Inform. 2017;75:110–21.

    Article  PubMed  Google Scholar 

  21. Ratain MJ, Nakamura Y, Cox NJ. CYP2D6 genotype and tamoxifen activity: understanding interstudy variability in methodological quality. Clin Pharmacol Ther. 2013;94:185–7.

    Article  CAS  PubMed  Google Scholar 

  22. Thorn CF, Whirl-Carrillo M, Hachad H, Johnson JA, McDonagh EM, Ratain MJ, et al. Essential characteristics of pharmacogenomics study publications. Clin Pharmacol Ther. 2019;105:86–91.

    Article  PubMed  Google Scholar 

  23. Pratt VM, Del Tredici AL, Hachad H, Ji Y, Kalman LV, Scott SA, et al. Recommendations for clinical CYP2C19 genotyping allele selection: a report of the association for molecular pathology. J Mol Diagn. 2018;20:269–76.

    Article  CAS  PubMed  Google Scholar 

  24. O’Donnell PH, Bush A, Spitz J, Danahey K, Saner D, Das S, et al. The 1200 patients project: creating a new medical model system for clinical implementation of pharmacogenomics. Clin Pharmacol Ther. 2012;92:446–9.

    Article  PubMed  Google Scholar 

  25. O’Donnell PH, Danahey K, Jacobs M, Wadhwa NR, Yuen S, Bush A, et al. Adoption of a clinical pharmacogenomics implementation program during outpatient care-initial results of the University of Chicago “1,200 Patients Project”. Am J Med Genet C Semin Med Genet. 2014;166C:68–75.

    Article  PubMed  Google Scholar 

  26. O’Donnell PH, Wadhwa N, Danahey K, Borden BA, Lee SM, Hall JP, et al. Pharmacogenomics-based point-of-care clinical decision support significantly alters drug prescribing. Clin Pharmacol Ther. 2017;102:859–69.

    Article  PubMed  Google Scholar 

  27. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010;182:E839–42.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Collaboration A. Development and validation of an international appraisal instrument for assessing the quality of clinical practice guidelines: the AGREE project. Qual Saf Health Care. 2003;12:18–23.

    Article  Google Scholar 

  29. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. Development of the AGREE II, part 1: performance, usefulness and areas for improvement. CMAJ. 2010;182:1045–52.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. Development of the AGREE II, part 2: assessment of validity of items and tools to support application. CMAJ. 2010;182:E472–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vlayen J, Aertgeerts B, Hannes K, Sermeus W, Ramaekers D. A systematic review of appraisal tools for clinical practice guidelines: multiple similarities and one common deficit. Int J Qual Health Care. 2005;17:235–42.

    Article  PubMed  Google Scholar 

  32. Truong TM, Apfelbaum J, Shahul S, Anitescu M, Danahey K, Knoebel RW, et al. The ImPreSS trial: implementation of point-of-care pharmacogenomic decision support in perioperative care. Clin Pharmacol Ther. 2019;106:1179–83.

    Article  PubMed  Google Scholar 

  33. Chidambaran V, Ngamprasertwong P, Vinks AA, Sadhasivam S. Pharmacogenetics and anesthetic drugs. Curr Clin Pharmacol. 2012;7:78–101.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou S, Skaar DJ, Jacobson PA, Huang RS. Pharmacogenomics of medications commonly used in the intensive care unit. Front Pharmacol. 2018;9:1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lam YW. Scientific challenges and implementation barriers to translation of pharmacogenomics in clinical practice. ISRN Pharmacol. 2013;2013:641089.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Johnson JA. Pharmacogenetics in clinical practice: how far have we come and where are we going? Pharmacogenomics 2013;14:835–43.

    Article  CAS  PubMed  Google Scholar 

  37. Criteria for Genetic TestingMalignant Hyperthermia Association of the United States. Available at: www.mhaus.org. Accessed November 30, 2019. 

  38. Henricks LM, Lunenburg C, de Man FM, Meulendijks D, Frederix GWJ, Kienhuis E, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 2018;19:1459–67.

    Article  CAS  PubMed  Google Scholar 

  39. Bank PCD, Swen JJ, Schaap RD, Klootwijk DB, Baak-Pablo R, Guchelaar HJ. A pilot study of the implementation of pharmacogenomic pharmacist initiated pre-emptive testing in primary care. Eur J Hum Genet. 2019;27:1532–41.

  40. Greden JF, Parikh SV, Rothschild AJ, Thase ME, Dunlop BW, DeBattista C, et al. Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: a large, patient- and rater-blinded, randomized, controlled study. J Psychiatr Res. 2019;111:59–67.

    Article  PubMed  Google Scholar 

  41. Smith DM, Weitzel KW, Elsey AR, Langaee T, Gong Y, Wake DT, et al. CYP2D6-guided opioid therapy improves pain control in CYP2D6 intermediate and poor metabolizers: a pragmatic clinical trial. Genet Med. 2019;21:1842–50.

  42. Ignite: Implementing Genomics in Clinical Practice.Genomic Medicine Knowledge Base. www.gmkb.org. Accessed 30 Nov 2019.

  43. Theken KN, Lee CR, Gong L, Caudle KE, Formea CM, Gaedigk A, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin Pharmacol Ther. 2020;108:191–200.

    Article  PubMed  Google Scholar 

  44. Food and Drug Administration. Drug Label: Mivacurium. 2015. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/020098s018lbl.pdf.

  45. Food and Drug Administration. Drug Label: Succinylcholine. 2010. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/008453s027lbl.pdf.

  46. Clinical Pharmacogenetics Implementation Consortium. Genes-Drugs. 2020. https://cpicpgx.org/genes-drugs/.

  47. Crews KR, Monte AA, Huddart R, Caudle KE, Kharasch ED, Gaedigk A, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6, OPRM1, and COMT genotype and select opioid therapy. Clin Pharmacol Ther. 2021. https://doi.org/10.1002/cpt.2149.

  48. Altman RB. Pharmacogenomics: “noninferiority” is sufficient for initial implementation. Clin Pharmacol Ther. 2011;89:348–50.

    Article  CAS  PubMed  Google Scholar 

  49. Stamer UM, Zhang L, Book M, Lehmann LE, Stuber F, Musshoff F. CYP2D6 genotype dependent oxycodone metabolism in postoperative patients. PLoS ONE. 2013;8:e60239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, et al. Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety. Br J Pharmacol. 2010;160:919–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, et al. The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol. 2010;160:907–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zwisler ST, Enggaard TP, Noehr-Jensen L, Pedersen RS, Mikkelsen S, Nielsen F, et al. The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin Pharmacol Toxicol. 2009;104:335–44.

    Article  CAS  PubMed  Google Scholar 

  53. Zwisler ST, Enggaard TP, Mikkelsen S, Brosen K, Sindrup SH. Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol Scand. 2010;54:232–40.

    Article  CAS  PubMed  Google Scholar 

  54. Andreassen TN, Eftedal I, Klepstad P, Davies A, Bjordal K, Lundstrom S, et al. Do CYP2D6 genotypes reflect oxycodone requirements for cancer patients treated for cancer pain? A cross-sectional multicentre study. Eur J Clin Pharmacol. 2012;68:55–64.

    Article  CAS  PubMed  Google Scholar 

  55. Duncan LE, Ostacher M, Ballon J. How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology. 2019;44:1518–23.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hendricks-Sturrup RM, Linsky A, Lu CY, Vassy JL. Genomic testing is best integrated into clinical practice when it is actionable. Per Med. 2020;17:5–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health (NIH)/NIGMS 5T32GM007019-41 (for EHJ and TMT as trainees), NIH/NHGRI 1R01HG009938-01A1 (PHO), by an Innovations Grant from the University of Chicago Medicine Office of Clinical Effectiveness (PHO), and the Benjamin McAllister Research Fellowship (TMT).

Author information

Authors and Affiliations

Authors

Contributions

BAB: data acquisition, data analysis, and drafting of paper. EHJ: study conception and design, data acquisition, data analysis, and drafting of paper. KD: data acquisition, data analysis. ES: data acquisition, data analysis. JLA: data analysis. MA: data analysis. RK: data analysis. SS: data analysis. TMT: data analysis. MJR: study conception and design. PHO: study conception and design, data acquisition, data analysis, and drafting of paper.

Corresponding author

Correspondence to Peter H. O’Donnell.

Ethics declarations

Competing interests

EHJ is currently an employee of OneOme. MJR is a co-inventor holding patents related to pharmacogenetic diagnostics and receives royalties related to UGT1A1 genotyping outside of this work. All other authors declared no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borden, B.A., Jhun, E.H., Danahey, K. et al. Appraisal and development of evidence-based clinical decision support to enable perioperative pharmacogenomic application. Pharmacogenomics J 21, 691–711 (2021). https://doi.org/10.1038/s41397-021-00248-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00248-2

Search

Quick links