Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacoepigenomics circuits induced by a novel retinoid-polyamine conjugate in human immortalized keratinocytes

Abstract

Retinoids are widely used in diseases spanning from dermatological lesions to cancer, but exhibit severe adverse effects. A novel all-trans-Retinoic Acid (atRA)-spermine conjugate (termed RASP) has shown previously optimal in vitro and in vivo anti-inflammatory and anticancer efficacy, with undetectable teratogenic and toxic side-effects. To get insights, we treated HaCaT cells which resemble human epidermis with IC50 concentration of RASP and analyzed their miRNA expression profile. Gene ontology analysis of their predicted targets indicated dynamic networks involved in cell proliferation, signal transduction and apoptosis. Furthermore, DNA microarrays analysis verified that RASP affects the expression of the same categories of genes. A protein–protein interaction map produced using the most significant common genes, revealed hub genes of nodal functions. We conclude that RASP is a synthetic retinoid derivative with improved properties, which possess the beneficial effects of retinoids without exhibiting side-effects and with potential beneficial effects against skin diseases including skin cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression profile of miRNAs after RASP treatment of HaCat cells.
Fig. 2: Expression profiling of miRNAs that have also been associated with skin cancer and GO analysis of their predicted targets.
Fig. 3: Expression profile of genes after RASP treated HaCat cells.
Fig. 4: Venn diagram of genes that are affected after treatment of keratinocytes with RASP.
Fig. 5: Clusters and their respective molecular function over the physical protein–protein interactions network with the protein products of the 546 statistically significant differentially expressed genes.
Fig. 6: Verification of expression level alterations of genes implicated in apoptosis, signaling and translation regulation via RT-qPCR.

Similar content being viewed by others

References

  1. Beckenbach L, Baron JM, Merk HF, Löffler H, Amann PM. Retinoid treatment of skin diseases. Eur J Dermatol. 2015;25:384–91.

    Article  CAS  PubMed  Google Scholar 

  2. Estler M, Boskovic G, Denvir J, Miles S, Primerano DA, Niles RM. Global analysis of gene expression changes during retinoic acid-induced growth arrest and differentiation of melanoma: comparison to differentially expressed genes in melanocytes vs melanoma. BMC Genomics. 2008;9:478.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Szymański Ł, Skopek R, Palusińska M, Schenk T, Stengel S, Lewicki S, et al. Retinoic acid and its derivatives in skin. Cells. 2020;9:2660.

    Article  PubMed Central  Google Scholar 

  4. Ferreira R, Napoli J, Enver T, Bernardino L, Ferreira L. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat Commun. 2020;11:4265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schoop VM, Fusenig NE, Mirancea N. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol. 1999;112:343–53.

    Article  CAS  PubMed  Google Scholar 

  6. Breitkreutz D, Stark H-J, Plein P, Baur M, Fusenig NE. Differential modulation of epidermal keratinization in immortalized (HaCaT) and tumorigenic human skin keratinocytes (HaCaT-ras) by retinoic acid and extracellular Ca2+. Differentiation. 1993;54:201–17.

    Article  CAS  PubMed  Google Scholar 

  7. Tang X-H, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol Mech Dis. 2011;6:345–64.

    Article  CAS  Google Scholar 

  8. Hu XT, Zuckerman KS. Role of cell cycle regulatory molecules in retinoic acid- and vitamin D3-induced differentiation of acute myeloid leukaemia cells. Cell Prolif. 2014;47:200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567–72.

    Article  CAS  PubMed  Google Scholar 

  10. Lin E, Chen M-C, Huang C-Y, Hsu S-L, Huang WJ, Lin M-S, et al. All-trans retinoic acid induces DU145 cell cycle arrest through Cdk5 activation. Cell Physiol Biochem. 2014;33:1620–30.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang M-l, Tao Y, Zhou W-Q, Ma P-C, Cao Y-P, He C-D, et al. All- trans retinoic acid induces cell-cycle arrest in human cutaneous squamous carcinoma cells by inhibiting the mitogen-activated protein kinase-activated protein 1 pathway. Clin Exp Dermatol. 2014;39:354–60.

    Article  PubMed  Google Scholar 

  12. Schenk T, Stengel S, Zelent A. Unlocking the potential of retinoic acid in anticancer therapy. Br J Cancer. 2014;111:2039–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Qassab Y, Grassilli S, Brugnoli F, Vezzali F, Capitani S, Bertagnolo V. Protective role of all-trans retinoic acid (ATRA) against hypoxia-induced malignant potential of non-invasive breast tumor derived cells. BMC Cancer. 2018;18:1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Albers M, Kranz H, Kober I, Kaiser C, Klink M, Suckow J, et al. Automated yeast two-hybrid screening for nuclear receptor-interacting proteins. Mol Cell Proteom. 2005;4:205–13.

    Article  CAS  Google Scholar 

  15. Amoutzias GD, Pichler EE, Mian N, De Graaf D, Imsiridou A, Robinson-Rechavi M, et al. A protein interaction atlas for the nuclear receptors: properties and quality of a hub-based dimerisation network. BMC Syst Biol. 2007;1:34.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Browne H, Mason G, Tang T. Retinoids and pregnancy: an update. Obstet Gynaecol. 2014;16:7–11.

    Article  Google Scholar 

  17. Ni X, Hu G, Cai X. The success and the challenge of all-trans retinoic acid in the treatment of cancer. Crit Rev Food Sci Nutr. 2019;59:S71–S80.

    Article  CAS  PubMed  Google Scholar 

  18. Magoulas G, Papaioannou D, Papadimou E, Drainas D. Preparation of spermine conjugates with acidic retinoids with potent ribonuclease P inhibitory activity. Eur J Med Chem. 2009;44:2689–95.

    Article  CAS  PubMed  Google Scholar 

  19. Vourtsis D, Lamprou M, Sadikoglou E, Giannou A, Theodorakopoulou O, Sarrou E, et al. Effect of an all-trans-retinoic acid conjugate with spermine on viability of human prostate cancer and endothelial cells in vitro and angiogenesis in vivo. Eur J Pharm. 2013;698:122–30.

    Article  CAS  Google Scholar 

  20. Hadjipavlou-Litina D, Magoulas GE, Bariamis SE, Drainas D, Avgoustakis K, Papaioannou D. Does conjugation of antioxidants improve their antioxidative/anti-inflammatory potential? Bioorg Med Chem. 2010;18:8204–17.

    Article  CAS  PubMed  Google Scholar 

  21. Petridis T, Giannakopoulou D, Stamatopoulou V, Grafanaki K, Kostopoulos CG, Papadaki H, et al. Investigation on toxicity and teratogenicity in rats of a retinoid-polyamine conjugate with potent anti-inflammatory properties. Birth Defects Res Part B Dev Reprod Toxicol. 2016;107:32–44.

    Article  CAS  Google Scholar 

  22. Lee D-D, Stojadinovic O, Krzyzanowska A, Vouthounis C, Blumenberg M, Tomic-Canic M. Retinoid-responsive transcriptional changes in epidermal keratinocytes. J Cell Physiol. 2009;220:427–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lima L, de Melo TCT, Marques D, de Araújo JNG, Leite ISF, Alves CX, et al. Modulation of all-trans retinoic acid-induced MiRNA expression in neoplastic cell lines: a systematic review. BMC Cancer. 2019;19:866.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gholikhani-Darbroud R. MicroRNA and retinoic acid. Clin Chim Acta. 2020;502:15–24.

    Article  CAS  PubMed  Google Scholar 

  25. Bariamis SE, Magoulas GE, Grafanaki K, Pontiki E, Tsegenidis T, Athanassopoulos CM, et al. Synthesis and biological evaluation of new C-10 substituted dithranol pleiotropic hybrids. Bioorg Med Chem. 2015;23:7251–63.

    Article  CAS  PubMed  Google Scholar 

  26. Skeparnias I, Anastasakis D, Grafanaki K, Kyriakopoulos G, Alexopoulos P, Dougenis D, et al. Contribution of miRNAs, tRNAs and tRFs to aberrant signaling and translation deregulation in lung cancer. Cancers. 2020;12:3056.

    Article  CAS  PubMed Central  Google Scholar 

  27. Theofilatos K, Dimitrakopoulos C, Likothanassis S, Kleftogiannis D, Moschopoulos C, Alexakos C, et al. The human interactome knowledge base (HINT-KB): an integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique. Artif Intell Rev. 2014;42:427–43.

    Article  Google Scholar 

  28. Shannon P. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li M, Li D, Tang Y, Wu F, Wang J. CytoCluster: a cytoscape plugin for cluster analysis and vsualization of biological networks. Int J Mol Sci. 2017;18:1880.

    Article  PubMed Central  Google Scholar 

  30. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  31. Wang Y, Zhang D. Tanshinol inhibits growth of malignant melanoma cells via regulating miR-1207-5p/CHPF pathway. Arch Dermatol Res. 2020;312:373–83.

    Article  PubMed  Google Scholar 

  32. Singhvi G, Manchanda P, Krishna Rapalli V, Kumar Dubey S, Gupta G, Dua K. MicroRNAs as biological regulators in skin disorders. Biomed Pharmacother. 2018;108:996–1004.

    Article  CAS  PubMed  Google Scholar 

  33. Gillespie J, Skeeles LE, Allain DC, Kent MN, Peters SB, Nagarajan P, et al. MicroRNA expression profiling in metastatic cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol. 2016;30:1043–5.

    Article  CAS  PubMed  Google Scholar 

  34. Xiang M, Yuan W, Zhang W, Huang J. Expression of miR-490-5p, miR-148a-3p and miR-608 in bladder cancer and their effects on the biological characteristics of bladder cancer cells. Oncol Lett. 2019;17:4437–42.

  35. Zhang J, Zhu Z, Sheng J, Yu Z, Yao B, Huang K, et al. miR-509-3-5P inhibits the invasion and lymphatic metastasis by targeting PODXL and serves as a novel prognostic indicator for gastric cancer. Oncotarget. 2017;8:34867–83.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen L, Lü M-H, Zhang D, Hao N-B, Fan Y-H, Wu Y-Y, et al. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis. 2014;5:e1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li X, Wu P, Tang Y, Fan Y, Liu Y, Fang X, et al. Down-regulation of MiR-181c-5p promotes epithelial-to-mesenchymal transition in laryngeal squamous cell carcinoma via targeting SERPINE1. Front Oncol. 2020;10:544476

  38. Jin Z, Jia B, Tan L, Liu Y. miR-330-3p suppresses liver cancer cell migration by targeting MAP2K1. Oncol Lett. 2019;18:314–20.

  39. Wang H, Liu G, Li T, Wang N, Wu J, Zhi H. MiR-330-3p functions as a tumor suppressor that regulates glioma cell proliferation and migration by targeting CELF1. Arch Med Sci. 2020;16:1166–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Huang R, Wang L, Hao J, Zhang Q, Ling R, et al. microRNA-762 promotes breast cancer cell proliferation and invasion by targeting IRF7 expression. Cell Prolif. 2015;48:643–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dever TE, Ivanov IP. Roles of polyamines in translation. J Biol Chem. 2018;293:18719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ishida S, Shigemoto-Mogami Y, Shinozaki Y, Kagechika H, Shudo K, Ozawa S, et al. Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharm. 2004;68:2177–86.

    Article  CAS  PubMed  Google Scholar 

  43. Chen Q, Liu D, Hu Z, Luo C, Zheng SL. miRNA-101-5p inhibits the growth and aggressiveness of NSCLC cells through targeting CXCL6. Onco Targets Ther. 2019;12:835–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. You W, Zhang X, Ji M, Yu Y, Chen C, Xiong Y, et al. MiR-152-5p as a microRNA passenger strand special functions in human gastric cancer cells. Int J Biol Sci. 2018;14:644–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miao Y, Li Q, Sun G, Wang L, Zhang D, Xu H, et al. MiR‐5683 suppresses glycolysis and proliferation through targeting pyruvate dehydrogenase kinase 4 in gastric cancer. Cancer Med. 2020;9:7231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ayub SG, Kaul D, Ayub T. An androgen-regulated miR-2909 modulates TGFβ signalling through AR/miR-2909 axis in prostate cancer. Gene. 2017;631:1–9.

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Li J, Ren J, Zhang D. MicroRNA-485-5p represses melanoma cell invasion and proliferation by suppressing Frizzled7. Biomed Pharmacother. 2017;90:303–10.

    Article  CAS  PubMed  Google Scholar 

  48. Liu Y, Cheng Z, Pan F, Yan W. MicroRNA-373 promotes growth and cellular invasion in osteosarcoma cells by activation of the PI3K/AKT‐Rac1‐JNK pathway: the potential role in spinal osteosarcoma. Oncol Res Featur Preclin Clin Cancer Ther. 2017;25:989–99.

    CAS  Google Scholar 

  49. Bai X, Yang M, Xu Y. MicroRNA-373 promotes cell migration via targeting salt-inducible kinase 1 expression in melanoma. Exp Ther Med. 2018;16:4759–64.

  50. Hong S, Yan Z, Wang H, Ding L, Song Y, Bi M. miR-663b promotes colorectal cancer progression by activating Ras/Raf signaling through downregulation of TNK1. Hum Cell. 2020;33:104–15.

    Article  CAS  PubMed  Google Scholar 

  51. Lu Y, Yang L, Qin A, Qiao Z, Huang B, Jiang X, et al. miR-1470 regulates cell proliferation and apoptosis by targeting ALX4 in hepatocellular carcinoma. Biochem Biophys Res Commun. 2020;522:716–23.

    Article  CAS  PubMed  Google Scholar 

  52. Miskin RP, Warren JSA, Ndoye A, Wu L, Lamar JM, DiPersio CM. Integrin α3β1 promotes invasive and metastatic properties of breast cancer cells through induction of the Brn-2 transcription factor. Cancers. 2021;13:480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song J, Zhang J, Wang J, Wang J, Guo X, Dong W. β1 integrin mediates colorectal cancer cell proliferation and migration through regulation of the Hedgehog pathway. Tumor Biol. 2015;36:2013–21.

    Article  CAS  Google Scholar 

  54. Trojanowicz B, Winkler A, Hammje K, Chen Z, Sekulla C, Glanz D, et al. Retinoic acid-mediated down-regulation of ENO1/MBP-1 gene products caused decreased invasiveness of the follicular thyroid carcinoma cell lines. J Mol Endocrinol. 2009;42:249–60.

    Article  CAS  PubMed  Google Scholar 

  55. Valente P, Fassina G, Melchiori A, Masiello L, Cilli M, Vacca A, et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer. 1998;75:246–53.

    Article  CAS  PubMed  Google Scholar 

  56. Ratzinger S, Grässel S, Dowejko A, Reichert TE, Bauer RJ. Induction of type XVI collagen expression facilitates proliferation of oral cancer cells. Matrix Biol. 2011;30:118–25.

    Article  CAS  PubMed  Google Scholar 

  57. Yao H-S, Sun C, Li X-X, Wang Y, Jin K-Z, Zhang X-P, et al. Annexin A4-nuclear factor-κB feedback circuit regulates cell malignant behavior and tumor growth in gallbladder cancer. Sci Rep. 2016;6:31056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elias I, Ferré T, Vilà L, Muñoz S, Casellas A, Garcia M, et al. ALOX5AP overexpression in adipose tissue leads to LXA 4 production and protection against diet-induced obesity and insulin resistance. Diabetes. 2016;65:2139–50.

    Article  CAS  PubMed  Google Scholar 

  59. Silverbush D, Sharan R. A systematic approach to orient the human protein–protein interaction network. Nat Commun. 2019;10:3015.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cardinez C, Miraghazadeh B, Tanita K, da Silva E, Hoshino A, Okada S, et al. Gain-of-function IKBKB mutation causes human combined immune deficiency. J Exp Med. 2018;215:2715–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tetel MJ, Acharya KD. Nuclear receptor coactivators: regulators of steroid action in brain and behaviour. J Neuroendocrinol. 2013;25:1209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wiley JW, Higgins GA, Athey BD. Stress and glucocorticoid receptor transcriptional programming in time and space: Implications for the brain-gut axis. Neurogastroenterol Motil. 2016;28:12–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Korashy H, Abuohashish H, Maayah Z. The Role of Aryl Hydrocarbon Receptor-Regulated Cytochrome P450 Enzymes in Glioma. Curr Pharm Des. 2013;19:7155–66.

    Article  CAS  PubMed  Google Scholar 

  64. James Faresse N, Canella D, Praz V, Michaud J, Romascano D, Hernandez N. Genomic study of RNA polymerase II and III SNAPc-bound promoters reveals a gene transcribed by both enzymes and a broad use of common activators. PLoS Genet. 2012;8:e1003028.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics. 2019;11:215–45.

    Article  CAS  PubMed  Google Scholar 

  66. Haase M, Fitze G. HSP90AB1: helping the good and the bad. Gene. 2016;575:171–86.

    Article  CAS  PubMed  Google Scholar 

  67. Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, et al. Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. J Biol Chem. 1993;268:9753–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I. Skeparnias is supported by a fellowship from the “RIBOMAP” Grant implemented under the Operational Program: Human Resources Development, Education and Lifelong Learning which is co-funded by the European Social Fund (ESF) and National Resources (MIS 5047175 to C.S.). G. Kyriakopoulos is supported by a PhD fellowship from the INSPIRED (MIS 5002550), which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Funding

The work was supported by INSPIRED (MIS 5002550), which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Constantinos Stathopoulos or Denis Drainas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grafanaki, K., Skeparnias, I., Kontos, C.K. et al. Pharmacoepigenomics circuits induced by a novel retinoid-polyamine conjugate in human immortalized keratinocytes. Pharmacogenomics J 21, 638–648 (2021). https://doi.org/10.1038/s41397-021-00241-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00241-9

This article is cited by

Search

Quick links