Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic and clinical prediction models for the efficacy and hepatotoxicity of methotrexate in patients with rheumatoid arthritis: a multicenter cohort study

Abstract

The objective of the study is to develop genetic and clinical prediction models for the efficacy and hepatotoxicity of methotrexate (MTX) in patients with rheumatoid arthritis (RA). Among RA patients treated with MTX, 1966 polymorphisms of 246 enzymes/transporters relevant to pharmacokinetics and pharmacodynamics were measured by the Drug Metabolism Enzymes and Transporters (DMET) microarray and direct sequencing, and clinical variables at baseline were collected. For efficacy, response criteria of the European League Against Rheumatism were used to classify patients as responders or non-responders. Hepatotoxicity was defined as elevations of aspartate aminotransferase or alanine aminotransferase ≥1.5 times the reference range upper limit. Among 166 patients, a genetic prediction model for efficacy using seven polymorphisms showed the area under the receiver operating characteristic curve (AUC) was 0.822, with 74.3% sensitivity and 76.8% specificity. A combined genetic and clinical model indicated the AUC was 0.844, with 81.5% sensitivity and 76.9% specificity. By incorporating clinical variables into the genetic model, the overall category-free net reclassification improvement (NRI) was 0.663 (P < 0.0001) and the overall integrated discrimination improvement (IDI) was 0.083 (P = 0.0009). For hepatotoxicity, a genetic prediction model using seven polymorphisms showed the AUC was 0.783 with 70.0% sensitivity and 80.0% specificity, while the combined model indicated the AUC was 0.906 with 85.1% sensitivity and 87.8% specificity (overall category-free NRI: 1.002, P < 0.0001; overall IDI: 0.254, P < 0.0001). Our genetic and clinical models demonstrated moderate diagnostic accuracy for MTX efficacy and high accuracy for hepatotoxicity. These findings should, however, be validated and interpreted with a caution until external validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart illustrating the development of the prediction models for methotrexate efficacy and hepatotoxicity.
Fig. 2: Receiver operation curves for the prediction models.
Fig. 3: Decision curves for the prediction models.

Similar content being viewed by others

Data availablility

Allele frequencies are available in https://humandbs.biosciencedbc.jp/.

References

  1. Singh JA, Saag KG, Bridges SL Jr, Akl EA, Bannuru RR, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68:1–26.

    PubMed  Google Scholar 

  2. Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76:960–77.

    Article  Google Scholar 

  3. Lopez-Olivo MA, Siddhanamatha HR, Shea B, Tugwell P, Wells GA, Suarez-Almazor ME. Methotrexate for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2014;10:Cd000957.

  4. Curtis JR, Beukelman T, Onofrei A, Cassell S, Greenberg JD, Kavanaugh A, et al. Elevated liver enzyme tests among patients with rheumatoid arthritis or psoriatic arthritis treated with methotrexate and/or leflunomide. Ann Rheum Dis. 2010;69:43–7.

    Article  CAS  Google Scholar 

  5. Brown PM, Pratt AG, Isaacs JD. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol. 2016;12:731–42.

    Article  CAS  Google Scholar 

  6. Qiu Q, Huang J, Shu X, Fan H, Zhou Y, Xiao C. Polymorphisms and pharmacogenomics for the clinical efficacy of methotrexate in patients with rheumatoid arthritis: a systematic review and meta-analysis. Sci Rep. 2017;7:44015.

    Article  Google Scholar 

  7. Qiu Q, Huang J, Lin Y, Shu X, Fan H, Tu Z, et al. Polymorphisms and pharmacogenomics for the toxicity of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic review and meta-analysis. Medicine. 2017;96:e6337.

    Article  CAS  Google Scholar 

  8. Umicevic Mirkov M, Janss L, Vermeulen SH, van de Laar MA, van Riel PL, Guchelaar HJ, et al. Estimation of heritability of different outcomes for genetic studies of TNFi response in patients with rheumatoid arthritis. Ann Rheum Dis. 2015;74:2183–7.

    Article  Google Scholar 

  9. Plant D, Wilson AG, Barton A. Genetic and epigenetic predictors of responsiveness to treatment in RA. Nat Rev Rheumatol. 2014;10:329–37.

    Article  CAS  Google Scholar 

  10. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Ann Rheum Dis. 2010;69:1580–8.

    Article  Google Scholar 

  11. Kameda H, Fujii T, Nakajima A, Koike R, Sagawa A, Kanbe K. et al. Japan College of Rheumatology guideline for the use of methotrexate in patients with rheumatoid arthritis. Mod Rheumatol. 2019;29:31–40.

    Article  Google Scholar 

  12. Inoue E, Yamanaka H, Hara M, Tomatsu T, Kamatani N. Comparison of Disease Activity Score (DAS)28- erythrocyte sedimentation rate and DAS28- C-reactive protein threshold values. Ann Rheum Dis. 2007;66:407–9.

    Article  CAS  Google Scholar 

  13. Fransen J, van Riel PL. The Disease Activity Score and the EULAR response criteria. Clin Exp Rheumatol. 2005;23:S93–9.

    CAS  PubMed  Google Scholar 

  14. Guzzi PH, Agapito G, Di Martino MT, Arbitrio M, Tassone P, Tagliaferri P, et al. DMET-analyzer: automatic analysis of Affymetrix DMET data. BMC Bioinform. 2012;13:258.

    Article  Google Scholar 

  15. den Boer E, de Rotte MC, Pluijm SM, Heil SG, Hazes JM, de Jonge R. Determinants of erythrocyte methotrexate polyglutamate levels in rheumatoid arthritis. J Rheumatol. 2014;41:2167–78.

    Article  Google Scholar 

  16. Kumagai S, Nishida M, Uemura Y, Izumi M, Abe K, Yoneda K, et al. Methotrexate polyglutamates levels in erythrocytes were genetically affected in RA patients with low disease activity for long period. Ann Rheum Dis. 2017;76:282.

    Google Scholar 

  17. Cook NR, Paynter NP. Performance of reclassification statistics in comparing risk prediction models. Biom J. 2011;53:237–58.

    Article  Google Scholar 

  18. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26:565–74.

    Article  Google Scholar 

  19. Agapito G, Guzzi PH, Cannataro M. DMET-Miner: efficient discovery of association rules from pharmacogenomic data. J Biomed Inform. 2015;56:273–83.

    Article  Google Scholar 

  20. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–93.

    Article  CAS  Google Scholar 

  21. Hazlewood GS, Barnabe C, Tomlinson G, Marshall D, Devoe D, Bombardier C. Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying antirheumatic drugs for rheumatoid arthritis: abridged Cochrane systematic review and network meta-analysis. Br Med J. 2016;353:i1777.

    Article  Google Scholar 

  22. Visser K, van der Heijde D. Optimal dosage and route of administration of methotrexate in rheumatoid arthritis: a systematic review of the literature. Ann Rheum Dis. 2009;68:1094–9.

    Article  CAS  Google Scholar 

  23. van der Straaten RJ, Wessels JA, de Vries-Bouwstra JK, Goekoop-Ruiterman YP, Allaart CF, Bogaartz J, et al. Exploratory analysis of four polymorphisms in human GGH and FPGS genes and their effect in methotrexate-treated rheumatoid arthritis patients. Pharmacogenomics. 2007;8:141–50.

    Article  Google Scholar 

  24. Hakamata J, Kaneko Y, Shimizu M, Yamaoka K, Maruyama J, Takeuchi T, et al. Factors predicting the therapeutic response to methotrexate in Japanese patients with rheumatoid arthritis: a hospital-based cohort study. Biol Pharm Bull. 2018;41:1414–22.

    Article  CAS  Google Scholar 

  25. Wei SC, Tan YY, Weng MT, Lai LC, Hsiao JH, Chuang EY, et al. SLCO3A1, A novel crohn’s disease-associated gene, regulates nf-kappaB activity and associates with intestinal perforation. PLoS One. 2014;9:e100515.

    Article  Google Scholar 

  26. Pan Q, Zhang X, Zhang L, Cheng Y, Zhao N, Li F, et al. Solute carrier organic anion transporter family member 3A1 is a bile acid efflux transporter in cholestasis. Gastroenterology. 2018;155:1578–92.e16.

    Article  CAS  Google Scholar 

  27. Dervieux T, Orentas Lein D, Marcelletti J, Pischel K, Smith K, Walsh M, et al. HPLC determination of erythrocyte methotrexate polyglutamates after low-dose methotrexate therapy in patients with rheumatoid arthritis. Clin Chem. 2003;49:1632–41.

    Article  CAS  Google Scholar 

  28. Takahashi C, Kaneko Y, Okano Y, Taguchi H, Oshima H, Izumi K, et al. Association of erythrocyte methotrexate-polyglutamate levels with the efficacy and hepatotoxicity of methotrexate in patients with rheumatoid arthritis: a 76-week prospective study. RMD Open. 2017;3:e000363.

    Article  Google Scholar 

  29. Yamamoto T, Shikano K, Nanki T, Kawai S. Folylpolyglutamate synthase is a major determinant of intracellular methotrexate polyglutamates in patients with rheumatoid arthritis. Sci Rep. 2016;6:35615.

    Article  CAS  Google Scholar 

  30. Li R, Zhao JX, Su Y, He J, Chen LN, Gu F, et al. High remission and low relapse with prolonged intensive DMARD therapy in rheumatoid arthritis (PRINT): a multicenter randomized clinical trial. Medicines. 2016;95:e3968.

    CAS  Google Scholar 

Download references

Acknowledgements

The DMET plus microarray measurement, direct sequencing, and statistical analyses were partly supported by Sysmex Corporation under the Collaborative Research Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Onishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishi, A., Kamitsuji, S., Nishida, M. et al. Genetic and clinical prediction models for the efficacy and hepatotoxicity of methotrexate in patients with rheumatoid arthritis: a multicenter cohort study. Pharmacogenomics J 20, 433–442 (2020). https://doi.org/10.1038/s41397-019-0134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0134-9

This article is cited by

Search

Quick links