Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dispersal, habitat filtering, and eco-evolutionary dynamics as drivers of local and global wetland viral biogeography

Abstract

Wetlands store 20–30% of the world’s soil carbon, and identifying the microbial controls on these carbon reserves is essential to predicting feedbacks to climate change. Although viral infections likely play important roles in wetland ecosystem dynamics, we lack a basic understanding of wetland viral ecology. Here 63 viral size-fraction metagenomes (viromes) and paired total metagenomes were generated from three time points in 2021 at seven fresh- and saltwater wetlands in the California Bodega Marine Reserve. We recovered 12,826 viral population genomic sequences (vOTUs), only 4.4% of which were detected at the same field site two years prior, indicating a small degree of population stability or recurrence. Viral communities differed most significantly among the seven wetland sites and were also structured by habitat (plant community composition and salinity). Read mapping to a new version of our reference database, PIGEONv2.0 (515,763 vOTUs), revealed 196 vOTUs present over large geographic distances, often reflecting shared habitat characteristics. Wetland vOTU microdiversity was significantly lower locally than globally and lower within than between time points, indicating greater divergence with increasing spatiotemporal distance. Viruses tended to have broad predicted host ranges via CRISPR spacer linkages to metagenome-assembled genomes, and increased SNP frequencies in CRISPR-targeted major tail protein genes suggest potential viral eco-evolutionary dynamics in response to both immune targeting and changes in host cell receptors involved in viral attachment. Together, these results highlight the importance of dispersal, environmental selection, and eco-evolutionary dynamics as drivers of local and global wetland viral biogeography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling design and overarching compositional patterns for Bodega Bay viral and prokaryotic communities.
Fig. 2: Global distribution and habitat context of Bodega Bay vOTUs, leveraging the PIGEONv2.0 database.
Fig. 3: Comparisons of viral variant (sub-population) diversity in local and global contexts.
Fig. 4: Bodega Bay virus-host linkages and putative interactions derived from CRISPR spacer-protospacer matches.

Similar content being viewed by others

Data availability

Raw sequencing reads are available at NCBI under BioProject number PRJNA913601, and sequence processing and statistical analysis code can be found on GitHub (https://github.com/AnneliektH/BodegaBay2021). The PIGEONv2.0 database vOTU sequences, the vOTU sequences recovered in this dataset, and MAGs recovered in this dataset are available on Dryad (https://datadryad.org/), using the following https://doi.org/10.25338/B8C934 (datasets with the most recent date stamp are the most current).

References

  1. Nahlik AM, Fennessy MS. Carbon storage in US wetlands. Nat Commun. 2016;7:13835.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hopkinson CS, Cai W-J, Hu X. Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude. Curr Opin Environ Sustainability. 2012;4:186–94.

    Google Scholar 

  3. Mitsch WJ, Gosselink JG. The value of wetlands: importance of scale and landscape setting. Ecol Econ. 2000;35:25–33.

    Google Scholar 

  4. Mitsch WJ, Bernal B, Hernandez ME. Ecosystem services of wetlands. Int J Biodivers Sci Eco Services Mgmt. 2015;11:1–4.

    Google Scholar 

  5. Yarwood SA. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol Ecol. 2018;94:fiy175.

  6. Zhou M, Butterbach-Bahl K, Vereecken H, Brüggemann N. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Glob Chang Biol. 2017;23:1338–52.

    PubMed  Google Scholar 

  7. Ardón M, Helton AM, Bernhardt ES. Salinity effects on greenhouse gas emissions from wetland soils are contingent upon hydrologic setting: a microcosm experiment. Biogeochemistry. 2018;140:217–32.

    Google Scholar 

  8. Zhang G, Bai J, Tebbe CC, Zhao Q, Jia J, Wang W, et al. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ Microbiol. 2021;23:1020–37.

    CAS  PubMed  Google Scholar 

  9. Green AJ, Alcorlo P, Peeters ET, Morris EP, Espinar JL, Bravo-Utrera MA, et al. Creating a safe operating space for wetlands in a changing climate. Front Ecol Environ. 2017;15:99–107.

    Google Scholar 

  10. Dalcin Martins P, Danczak RE, Roux S, Frank J, Borton MA, Wolfe RA, et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome. 2018;6:138.

    PubMed  PubMed Central  Google Scholar 

  11. Emerson JB. Soil viruses: a new hope. mSystems. 2019;4:e00120–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim E-H, Mondav R, et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature. 2014;514:478–81.

    CAS  PubMed  Google Scholar 

  13. Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.

    CAS  PubMed  Google Scholar 

  14. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e00076–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.

    CAS  PubMed  Google Scholar 

  17. Santos-Medellin C, Zinke LA, ter Horst AM, Gelardi DL, Parikh SJ, Emerson JB. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 2021;15:1956–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. ter Horst AM, Santos-Medellín C, Sorensen JW, Zinke LA, Wilson RM, Johnston ER, et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome. 2021;9:233.

    PubMed  PubMed Central  Google Scholar 

  19. Durham DM, Sieradzki ET, ter Horst AM, Santos-Medellín C, Bess CWA, Geonczy SE, et al. Substantial differences in soil viral community composition within and among four Northern California habitats. ISME Commun. 2022;2:1–5.

    Google Scholar 

  20. Hillary LS, Adriaenssens EM, Jones DL, McDonald JE. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME Commun. 2022;2:34.

    PubMed  PubMed Central  Google Scholar 

  21. Santos-Medellín C, Estera-Molina K, Yuan M, Pett-Ridge J, Firestone MK, Emerson JB. Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands. Proc Natl Acad Sci USA. 2022;119:e2209132119.

    PubMed  PubMed Central  Google Scholar 

  22. Wu R, Davison MR, Nelson WC, Graham EB, Fansler SJ, Farris Y, et al. DNA viral diversity, abundance, and functional potential vary across grassland soils with a range of historical moisture regimes. mBio. 2021;12:e0259521.

    PubMed  Google Scholar 

  23. Coclet C, Sorensen PO, Karaoz U, Wang S, Brodie EL, Eloe-Fadrosh EA, et al. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem. bioRxiv. 2023. 2023.03.06.531389.

  24. Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee S, Sorensen JW, Walker RL, Emerson JB, Nicol GW, Hazard C. Soil pH influences the structure of virus communities at local and global scales. Soil Biol Biochem. 2022;166:108569.

    CAS  Google Scholar 

  26. Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat Biotechnol. 2019;37:29–37.

    CAS  PubMed  Google Scholar 

  27. Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Corwin DL, Scudiero E Chapter One - Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. In: Sparks DL (ed). Advances in Agronomy. 2019. Academic Press, pp 1–130.

  29. Bui EN. Causes of soil salinization, sodification, and alkalinization. In Oxford Research Encyclopedia of Environmental Science. Oxford University Press: Oxford, UK; 2017. https://www.oxfordreference.com/display/10.1093/acref/9780190496616.001.0001/acref-9780190496616-e-264.

  30. Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot. 2013;112:1209–21.

    PubMed  PubMed Central  Google Scholar 

  31. Ungar IA. Are biotic factors significant in influencing the distribution of halophytes in saline habitats? Bot Rev. 1998;64:176–99.

    Google Scholar 

  32. Liang X, Wang Y, Zhang Y, Zhuang J, Radosevich M. Viral abundance, community structure and correlation with bacterial community in soils of different cover plants. Appl Soil Ecol. 2021;168:104138.

    Google Scholar 

  33. Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh H-J, Cuenca M, et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun. 2019;10:1014.

    PubMed  PubMed Central  Google Scholar 

  34. Coutinho FH, Cabello-Yeves PJ, Gonzalez-Serrano R, Rosselli R, López-Pérez M, Zemskaya TI, et al. New viral biogeochemical roles revealed through metagenomic analysis of Lake Baikal. Microbiome. 2020;8:163.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek BA, Morowitz MJ, Banfield JF. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat Biotechnol. 2021;39:727–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.

    CAS  PubMed  Google Scholar 

  37. Skennerton CT, Imelfort M, Tyson GW. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 2013;41:e105.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Roux S, Camargo AP, Coutinho FH, Dabdoub SM, Dutilh BE, Nayfach S, et al. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 2023;21:e3002083.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Meaden S, Biswas A, Arkhipova K, Morales SE, Dutilh BE, Westra ER, et al. High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems. Curr Biol. 2022;32:220–7.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hwang Y, Roux S, Coclet C, Krause SJE, Girguis PR. Viruses interact with hosts that span distantly related microbial domains in dense hydrothermal mats. Nat Microbiol. 2023;8:946–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. George NA, Hug LA. CRISPR-resolved virus-host interactions in a municipal landfill include non-specific viruses, hyper-targeted viral populations, and interviral conflicts. Sci Rep. 2023;13:5611.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Quinones-Olvera N, Owen SV, McCully LM, Marin MG, Rand EA, Fan AC, et al. Diverse and abundant viruses exploit conjugative plasmids. bioRxiv. 2023. https://doi.org/10.1101/2023.03.19.532758.

  43. Paez-Espino D, Sharon I, Morovic W, Stahl B, Thomas BC, Barrangou R, et al. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio. 2015;6:e00262–15.

    PubMed  PubMed Central  Google Scholar 

  44. Sun CL, Barrangou R, Thomas BC, Horvath P, Fremaux C, Banfield JF. Phage mutations in response to CRISPR diversification in a bacterial population. Environ Microbiol. 2013;15:463–70.

    CAS  PubMed  Google Scholar 

  45. Koskella B, Brockhurst MA. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:916–31.

    CAS  PubMed  Google Scholar 

  46. Betts A, Gray C, Zelek M, MacLean RC, King KC. High parasite diversity accelerates host adaptation and diversification. Science. 2018;360:907–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Scanlan PD, Hall AR, Lopez-Pascua LDC, Buckling A. Genetic basis of infectivity evolution in a bacteriophage. Mol Ecol. 2011;20:981–9.

    PubMed  Google Scholar 

  48. Göller PC, Haro-Moreno JM, Rodriguez-Valera F, Loessner MJ, Gómez-Sanz E. Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages from soil. Microbiome. 2020;8:90.

    Google Scholar 

  49. Sorensen JW, Zinke LA, ter Horst AM, Santos-Medellín C, Schroeder A, Emerson JB. DNase treatment improves viral enrichment in agricultural soil viromes. mSystems. 2021;6:e0061421.

    PubMed  Google Scholar 

  50. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bushnell B BBMap: a fast, accurate, splice-aware aligner. 2014. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).

  52. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

    CAS  PubMed  Google Scholar 

  53. Dart E, Fuhrman JA, Ahlgren NA. Diverse marine T4-like cyanophage communities are primarily comprised of low-abundance species including species with distinct seasonal, persistent, occasional, or sporadic dynamics. Viruses. 2023;15:581.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Longmead B, Salzberg SL. Fast gapped-read alignment with Bowtie2. Nat Methods. 2012;9:357–9.

    Google Scholar 

  57. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    PubMed  PubMed Central  Google Scholar 

  58. Woodcroft BJ CoverM: Read coverage calculator for metagenomics. Github.

  59. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26:680–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.

    PubMed  PubMed Central  Google Scholar 

  61. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell. 2019;176:649–62.e20.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.

    CAS  PubMed  Google Scholar 

  64. Olm MR, Dahan D, Carter MM, Merrill BD, Yu FB, Jain S, et al. Robust variation in infant gut microbiome assembly across a spectrum of lifestyles. Science. 2022;376:1220–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics. 2022;38:5315–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.

    CAS  PubMed  Google Scholar 

  67. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS  PubMed  Google Scholar 

  68. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.

    CAS  PubMed  Google Scholar 

  70. Quensen J RDPutils: R utilities for processing RDPTool output. https://rdrr.io/github/jfq3/RDPutils/.

  71. Labbé M, Girard C, Vincent WF, Culley AI. Extreme viral partitioning in a marine-derived high arctic Lake. mSphere. 2020;5:e00334–20.

    PubMed  PubMed Central  Google Scholar 

  72. Vik D, Gazitúa MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR, et al. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol. 2021;23:2858–74.

    CAS  PubMed  Google Scholar 

  73. Li Z, Pan D, Wei G, Pi W, Zhang C, Wang J-H, et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 2021;15:2366–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, et al. The structure and function of the global citrus rhizosphere microbiome. Nat Commun. 2018;9:4894.

    PubMed  PubMed Central  Google Scholar 

  75. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D61–5.

    CAS  PubMed  Google Scholar 

  76. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS  PubMed  Google Scholar 

  77. RCore T. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2016.

  78. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-2. 2018. 2018. Vienna: R Core Team.

  79. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.

    CAS  PubMed  Google Scholar 

  80. Griffith DM, Veech JA, Marsh CJ. cooccur: probabilistic species co-occurrence analysis in R. J Stat Softw. 2016;69:1–17.

    Google Scholar 

  81. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kahle D, Wickham H ggmap: Spatial visualization with ggplot2. The R J. 5, 144-61. https://www.journalr-projectorg/archive/2013-1/kahle.

  84. Hunter. Matplotlib. A 2D Graphics Environment. 2007;9:90–5.

  85. seaborn: statistical data visualization — seaborn 0.11.2 documentation. https://seaborn.pydata.org/.

  86. Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wickham H ggplot2: elegant graphics for data analysis. data. 2016.

Download references

Acknowledgements

We thank Sara Geonczy and Devyn Durham for their help with sampling, Christian Santos-Medellín for helpful discussions, and the University of California, Davis Natural Reserves site directors and staff, particularly Suzanne Olyarnik at the Bodega Marine Reserve, for facilitating site access and providing logistical support. Funding for this work was provided by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER), Genomic Science Program, award number DE-SC0021198 (grant to JBE).

Author information

Authors and Affiliations

Authors

Contributions

JE and AH designed the experiments. JF, JS and AH collected samples for this study, with JS providing information about the plant community at field sites. AH performed laboratory work and analyzed the data. JE and AH wrote the manuscript.

Corresponding author

Correspondence to Joanne B. Emerson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ter Horst, A.M., Fudyma, J.D., Sones, J.L. et al. Dispersal, habitat filtering, and eco-evolutionary dynamics as drivers of local and global wetland viral biogeography. ISME J 17, 2079–2089 (2023). https://doi.org/10.1038/s41396-023-01516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01516-8

Search

Quick links