Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conjugative transfer of streptococcal prophages harboring antibiotic resistance and virulence genes

Abstract

Prophages play important roles in the transduction of various functional traits, including virulence factors, but remain debatable in harboring and transmitting antimicrobial resistance genes (ARGs). Herein we characterize a prevalent family of prophages in Streptococcus, designated SMphages, which harbor twenty-five ARGs that collectively confer resistance to ten antimicrobial classes, including vanG-type vancomycin resistance locus and oxazolidinone resistance gene optrA. SMphages integrate into four chromosome attachment sites by utilizing three types of integration modules and undergo excision in response to phage induction. Moreover, we characterize four subtypes of Alp-related surface proteins within SMphages, the lethal effects of which are extensively validated in cell and animal models. SMphages transfer via high-frequency conjugation that is facilitated by integrative and conjugative elements from either donors or recipients. Our findings explain the widespread of SMphages and the rapid dissemination of ARGs observed in members of the Streptococcus genus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SMphage organization and prophage-host crosstalk inferred by phylogenetic analysis of SMphage and bacterial genomes.
Fig. 2: ARG-carrying fragments accreted within VRs of Clade_Ssu subgroup SMphages.
Fig. 3: Integration and excision of SMphages.
Fig. 4: HGT mechanisms of SMphages.
Fig. 5: Alp-Ps of Clade_Sag subgroup SMphages contributed to bacterial virulence to bacterial host.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol. 2015;13:641–50.

    Article  CAS  PubMed  Google Scholar 

  2. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Penades JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171–8.

    Article  CAS  PubMed  Google Scholar 

  4. Brussow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Davies EV, Winstanley C, Fothergill JL, James CE. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol Lett. 2016;363:fnw015.

    Article  PubMed  Google Scholar 

  6. Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. Infect Immun. 2002;70:3985–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marti E, Variatza E, Balcazar JL. Bacteriophages as a reservoir of extended-spectrum beta-lactamase and fluoroquinolone resistance genes in the environment. Clin Microbiol Infect. 2014;20:O456–9.

    Article  CAS  PubMed  Google Scholar 

  8. Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature. 2013;499:219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 2017;11:237–47.

    Article  CAS  PubMed  Google Scholar 

  10. Lekunberri I, Subirats J, Borrego CM, Balcazar JL. Exploring the contribution of bacteriophages to antibiotic resistance. Environ Pollut. 2017;220:981–4.

    Article  CAS  PubMed  Google Scholar 

  11. Ubukata K, Konno M, Fujii R. Transduction of drug resistance to tetracycline, chloramphenicol, macrolides, lincomycin and clindamycin with phages induced from Streptococcus pyogenes. J Antibiot. 1975;28:681–8.

    Article  CAS  Google Scholar 

  12. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW. Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett Appl Microbiol. 2011;52:559–64.

    Article  CAS  PubMed  Google Scholar 

  13. Torres-Barcelo C. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg Microbes Infect. 2018;7:168.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haenni M, Lupo A, Madec JY. Antimicrobial resistance in Streptococcus spp. Microbiol Spectr. 2018;6. https://doi.org/10.1128/microbiolspec.arba-0008-2017.

  15. Krzysciak W, Pluskwa KK, Jurczak A, Koscielniak D. The pathogenicity of the Streptococcus genus. Eur J Clin Microbiol Infect Dis. 2013;32:1361–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. CDC. Antibiotic resistance threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC 2019.

  17. Huang J, Ma J, Shang K, Hu X, Liang Y, Li D, et al. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other streptococci. Front Cell Infect Microbiol. 2016;6:118.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Palmieri C, Varaldo PE, Facinelli B. Streptococcus suis, an emerging drug-resistant animal and human pathogen. Front Microbiol. 2011;2:235.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baquero F, Martínez JL, Lanza VF, Rodríguez-Beltrán J, Galán JC, San Millán A, et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin Microbiol Rev. 2021;34:e0005019.

    Article  CAS  PubMed  Google Scholar 

  20. Arnold BJ, Huang IT, Hanage WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol. 2022;20:206–18.

    Article  CAS  PubMed  Google Scholar 

  21. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31:e00088–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Libante V, Nombre Y, Coluzzi C, Staub J, Guedon G, Gottschalk M, et al. Chromosomal conjugative and mobilizable elements in Streptococcus suis: major actors in the spreading of antimicrobial resistance and bacteriocin synthesis genes. Pathogens 2019;9:22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Varaldo PE, Montanari MP, Giovanetti E. Genetic elements responsible for erythromycin resistance in streptococci. Antimicrob Agents Chemother. 2009;53:343–53.

    Article  CAS  PubMed  Google Scholar 

  24. Ambroset C, Coluzzi C, Guédon G, Devignes MD, Loux V, Lacroix T, et al. New insights into the classification and integration specificity of Streptococcus integrative conjugative elements through extensive genome exploration. Front Microbiol. 2015;6:1483.

    PubMed  Google Scholar 

  25. Wozniak RA, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol. 2010;8:552–63.

    Article  CAS  PubMed  Google Scholar 

  26. Ramsay JP, Firth N. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr Opin Microbiol. 2017;38:1–9.

    Article  CAS  PubMed  Google Scholar 

  27. Guédon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The obscure world of integrative and mobilizable elements, highly widespread elements that pirate bacterial conjugative systems. Genes 2017;8:337.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Di Luca MC, D’Ercole S, Petrelli D, Prenna M, Ripa S, Vitali LA. Lysogenic transfer of mef(A) and tet(O) genes carried by Φm46.1 among group A streptococci. Antimicrob Agents Chemother. 2010;54:4464–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, Chee MSJ, et al. Genome hypermobility by lateral transduction. Science 2018;362:207–12.

    Article  CAS  PubMed  Google Scholar 

  30. Fillol-Salom A, Bacigalupe R, Humphrey S, Chiang YN, Chen J, Penades JR. Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22. Nat Commun. 2021;12:6510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Keen EC, Bliskovsky VV, Malagon F, Baker JD, Prince JS, Klaus JS, et al. Novel “superspreader” bacteriophages promote horizontal gene transfer by transformation. mBio 2017;8:e02115–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun. 2016;7:13333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Aljaro C, Balleste E, Muniesa M. Beyond the canonical strategies of horizontal gene transfer in prokaryotes. Curr Opin Microbiol. 2017;38:95–105.

    Article  CAS  PubMed  Google Scholar 

  34. Brabban AD, Hite E, Callaway TR. Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis. 2005;2:287–303.

    Article  CAS  PubMed  Google Scholar 

  35. Brenciani A, Bacciaglia A, Vignaroli C, Pugnaloni A, Varaldo PE, Giovanetti E. Φm46.1, the main Streptococcus pyogenes element carrying mef(A) and tet(O) genes. Antimicrob Agents Chemother. 2010;54:221–9.

    Article  CAS  PubMed  Google Scholar 

  36. Banks DJ, Porcella SF, Barbian KD, Martin JM, Musser JM. Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus. J Infect Dis. 2003;188:1898–908.

    Article  CAS  PubMed  Google Scholar 

  37. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci Usa 2005;102:13950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Palmieri C, Princivalli MS, Brenciani A, Varaldo PE, Facinelli B. Different genetic elements carrying the tet(W) gene in two human clinical isolates of Streptococcus suis. Antimicrob Agents Chemother. 2011;55:631–6.

    Article  CAS  PubMed  Google Scholar 

  39. D’Ercole S, Petrelli D, Prenna M, Zampaloni C, Catania MR, Ripa S, et al. Distribution of mef(A)-containing genetic elements in erythromycin-resistant isolates of Streptococcus pyogenes from Italy. Clin Microbiol Infect. 2005;11:927–30.

    Article  PubMed  Google Scholar 

  40. Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol. 2020;18:125–38.

    Article  CAS  PubMed  Google Scholar 

  41. Du FS, Lv X, Duan D, Wang LP, Huang JH. Characterization of a linezolid- and vancomycin-resistant Streptococcus suis isolate that harbors optrA and vanG operons. Front Microbiol. 2019;10:2026.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Varhimo E, Savijoki K, Jalava J, Kuipers OP, Varmanen P. Identification of a novel streptococcal gene cassette mediating SOS mutagenesis in Streptococcus uberis. J Bacteriol. 2007;189:5210–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srinivasan V, Metcalf BJ, Knipe KM, Ouattara M, McGee L, Shewmaker PL, et al. vanG element insertions within a conserved chromosomal site conferring vancomycin resistance to Streptococcus agalactiae and Streptococcus anginosus. mBio 2014;5:e01386–14.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol. 2014;12:181–96.

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Zeng Y, Huang Y, Gu L, Wang S, Li C, et al. HtrA-mediated selective degradation of DNA uptake apparatus accelerates termination of pneumococcal transformation. Mol Microbiol. 2019;112:1308–25.

    Article  CAS  PubMed  Google Scholar 

  46. Giovanetti E, Brenciani A, Morroni G, Tiberi E, Pasquaroli S, Mingoia M, et al. Transduction of the Streptococcus pyogenes bacteriophage Φm46.1, carrying resistance genes mef(A) and tet(O), to other Streptococcus species. Front Microbiol. 2014;5:746.

    PubMed  Google Scholar 

  47. Zabriskie JB. The role of temperate bacteriophage in the production of erythrogenic toxin by group A streptococci. J Exp Med. 1964;119:761–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinmoen H, Knutsen E, Havarstein LS. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci Usa 2002;99:7681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Creti R, Baldassarri L, Montanaro L, Arciola CR. The alpha-like surface proteins: an example of an expanding family of adhesins. Int J Artif Organs. 2008;31:834–40.

    Article  CAS  PubMed  Google Scholar 

  50. Li J, Kasper DL, Ausubel FM, Rosner B, Michel JL. Inactivation of the alpha C protein antigen gene, bca, by a novel shuttle/suicide vector results in attenuation of virulence and immunity in group B Streptococcus. Proc Natl Acad Sci Usa 1997;94:13251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stålhammar-Carlemalm M, Areschoug T, Larsson C, Lindahl G. The R28 protein of Streptococcus pyogenes is related to several group B streptococcal surface proteins, confers protective immunity and promotes binding to human epithelial cells. Mol Microbiol. 1999;33:208–19.

    Article  PubMed  Google Scholar 

  52. Creti R, Imperi M, Baldassarri L, Pataracchia M, Alfarone G, Orefici G. Lateral transfer of alpha-like protein gene cassettes among streptococci: identification of a new family member in Streptococcus dysgalactiae subsp. equisimilis. Lett Appl Microbiol. 2007;44:224–7.

    Article  CAS  PubMed  Google Scholar 

  53. Liu G, Zhang W, Lu C. Complete genome sequence of Streptococcus agalactiae GD201008-001, isolated in China from tilapia with meningoencephalitis. J Bacteriol. 2012;194:6653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Balcazar JL. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog. 2014;10:e1004219.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Abedon ST, Lejeune JT. Why bacteriophage encode exotoxins and other virulence factors. Evol Bioinform Online. 2007;1:97–110.

    PubMed  PubMed Central  Google Scholar 

  56. Allen HK, Looft T, Bayles DO, Humphrey S, Levine UY, Alt D, et al. Antibiotics in feed induce prophages in swine fecal microbiomes. mBio. 2011;2:e00260–11.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gabashvili E, Osepashvili M, Koulouris S, Ujmajuridze L, Tskhitishvili Z, Kotetishvili M. Phage transduction is involved in the intergeneric spread of antibiotic resistance-associated blaCTX-M, mel, and tetM loci in natural populations of some human and animal bacterial pathogens. Curr Microbiol. 2020;77:185–93.

    Article  CAS  PubMed  Google Scholar 

  58. Coluzzi C, Guédon G, Devignes MD, Ambroset C, Loux V, Lacroix T, et al. A glimpse into the world of integrative and mobilizable elements in streptococci reveals an unexpected diversity and novel families of mobilization proteins. Front Microbiol. 2017;8:443.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Maeland JA, Afset JE, Lyng RV, Radtke A. Survey of immunological features of the alpha-like proteins of Streptococcus agalactiae. Clin Vaccin Immunol. 2015;22:153–9.

    Article  Google Scholar 

  60. Lindahl G, Stålhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev. 2005;18:102–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Darmancier H, Domingues CPF, Rebelo JS, Amaro A, Dionisio F, Pothier J, et al. Are virulence and antibiotic resistance genes linked? A comprehensive analysis of bacterial chromosomes and plasmids. Antibiotics (Basel). 2022;11:706.

    Article  CAS  PubMed  Google Scholar 

  62. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2000;44:1549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Novick RP, Christie GE, Penades JR. The phage-related chromosomal islands of Gram-positive bacteria. Nat Rev Microbiol. 2010;8:541–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guglielmini J, Quintais L, Garcillan-Barcia MP, de la Cruz F, Rocha EPC. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 2011;7:e1002222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Daccord A, Ceccarelli D, Burrus V. Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol Microbiol. 2010;78:576–88.

    Article  CAS  PubMed  Google Scholar 

  66. Waldor MK. Mobilizable genomic islands: going mobile with oriT mimicry. Mol Microbiol. 2010;78:537–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang J, Liang Y, Guo D, Shang K, Ge L, Kashif J, et al. Comparative genomic analysis of the ICESa2603 family ICEs and spread of erm(B)- and tet(O)-carrying transferable 89K-subtype ICEs in swine and bovine isolates in China. Front Microbiol. 2016;7:55.

    Article  PubMed  PubMed Central  Google Scholar 

  68. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. CLSI supplement M100.: Wayne, PA: Clinical and Laboratory Standards Institute; 2023.

  69. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–6.

    Article  CAS  PubMed  Google Scholar 

  71. Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takamatsu D, Osaki M, Sekizaki T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid 2001;46:140–8.

    Article  CAS  PubMed  Google Scholar 

  73. Takamatsu D, Osaki M, Sekizaki T. Construction and characterization of Streptococcus suis-Escherichia coli shuttle cloning vectors. Plasmid 2001;45:101–13.

    Article  CAS  PubMed  Google Scholar 

  74. Bensing BA, Siboo IR, Sullam PM. Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage. Infect Immun. 2001;69:6186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tang F, Bossers A, Harders F, Lu C, Smith H. Comparative genomic analysis of twelve Streptococcus suis (pro)phages. Genomics 2013;101:336–44.

    Article  CAS  PubMed  Google Scholar 

  76. Zhu Y, Dong W, Ma J, Zhang Y, Pan Z, Yao H. Utilization of the ComRS system for the rapid markerless deletion of chromosomal genes in Streptococcus suis. Future Microbiol. 2019;14:207–22.

    Article  CAS  PubMed  Google Scholar 

  77. Zaccaria E, van Baarlen P, de Greeff A, Morrison DA, Smith H, Wells JM. Control of competence for DNA transformation in Streptococcus suis by genetically transferable pherotypes. PLoS One. 2014;9:e99394.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen L, Huang JH, Huang XX, He YP, Sun JJ, Dai XY, et al. Horizontal transfer of different erm(B)-carrying mobile elements among Streptococcus suis strains with different serotypes. Front Microbiol. 2021;12:628740.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vela AI, Goyache J, Tarradas C, Luque I, Mateos A, Moreno MA, et al. Analysis of genetic diversity of Streptococcus suis clinical isolates from pigs in Spain by pulsed-field gel electrophoresis. J Clin Microbiol. 2003;41:2498–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang JH, Shang KX, Kashif J, Wang LP. Genetic diversity of Streptococcus suis isolated from three pig farms of China obtained by acquiring antibiotic resistance genes. J Sci Food Agr. 2015;95:1454–60.

    Article  CAS  Google Scholar 

  81. Kodio O, Georges Togo AC, Sadio Sarro YD, Fane B, Diallo F, Somboro A, et al. Competitive fitness of Mycobacterium tuberculosis in vitro. Int J Mycobacteriol. 2019;8:287–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rasband WS. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. https://imagej.net/ij/index.html. 1997.

  83. Deshayes de Cambronne R, Fouet A, Picart A, Bourrel AS, Anjou C, Bouvier G, et al. CC17 group B Streptococcus exploits integrins for neonatal meningitis development. J Clin Investig. 2021;131:e136737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neely MN, Pfeifer JD, Caparon M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun. 2002;70:3904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27:493–7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFD1800400), the National Natural Science Foundation of China (32172917, 32072915 and 31872517), the Natural Science Foundation of Jiangsu Province (BK20170710 and BK20210402), the Jiangsu Agriculture Science and Technology Innovation Fund (CX(22)3039), the Jiangsu Distinguished Professor Program (060804097), the Distinguished Young Scholars of the National Natural Science Foundation of China (Overseas), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The bioinformatics analyses were supported by the high-performance computing platform of Bioinformatics Center, Nanjing Agricultural University, and a startup award at Nanjing Agricultural University 060804009).

We would like to thank Dr. Zongfu Wu and Jiale Ma from Nanjing Agricultural University for their assistance in the bacterial virulence study, and Dr. Qijing Zhang from Iowa State University for fruitful discussions and manuscript improvement.

Author information

Authors and Affiliations

Authors

Contributions

JH and LW conceived and designed the experiments. JH, ZW, JL, YT, WZ and XH performed bioinformatics analyses. JH, XD, JS, PH and JZ generated strains and plasmids and performed HGT and other experiments. XD, GL and XW performed the cell and animal experiments. JH, XD and ZW wrote the original draft. LW, JL, DRC, YW and SM reviewed and edited the manuscript.

Corresponding authors

Correspondence to Jinxin Liu or Liping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

Animal experiments were carried out at the Laboratory Animal Center of Nanjing Agricultural University, according to the guidelines of Experimental Animal Management Measures of Jiangsu Province and were approved by the Laboratory Animal Monitoring Committee of Jiangsu Province, China [Permit number: SYXK (Su) 2017-0007].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Dai, X., Wu, Z. et al. Conjugative transfer of streptococcal prophages harboring antibiotic resistance and virulence genes. ISME J 17, 1467–1481 (2023). https://doi.org/10.1038/s41396-023-01463-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01463-4

Search

Quick links