Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional convergence in slow-growing microbial communities arises from thermodynamic constraints

Abstract

The dynamics of microbial communities is complex, determined by competition for metabolic substrates and cross-feeding of byproducts. Species in the community grow by harvesting energy from chemical reactions that transform substrates to products. In many anoxic environments, these reactions are close to thermodynamic equilibrium and growth is slow. To understand the community structure in these energy-limited environments, we developed a microbial community consumer-resource model incorporating energetic and thermodynamic constraints on an interconnected metabolic network. The central element of the model is product inhibition, meaning that microbial growth may be limited not only by depletion of metabolic substrates but also by accumulation of products. We demonstrate that these additional constraints on microbial growth cause a convergence in the structure and function of the community metabolic network—independent of species composition and biochemical details—providing a possible explanation for convergence of community function despite taxonomic variation observed in many natural and industrial environments. Furthermore, we discovered that the structure of community metabolic network is governed by the thermodynamic principle of maximum free energy dissipation. Our results predict the decrease of functional convergence in faster growing communities, which we validate by analyzing experimental data from anaerobic digesters. Overall, the work demonstrates how universal thermodynamic principles may constrain community metabolism and explain observed functional convergence in microbial communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model of communities in energy-limited environments.
Fig. 2: Functional convergence despite taxonomic variation.
Fig. 3: The maximum dissipation principle determines the community metabolic network.
Fig. 4: Functional convergence and the strength of thermodynamic constraints decreases in fast-growing communities.
Fig. 5: Metabolic convergence in experimental anaerobic digesters weakens with dilution rate.
Fig. 6: Functional convergence decreases with increasing reaction energies.

Similar content being viewed by others

Data availability

Experimental data analyzed were obtained from ref. [53].

Code availability

Code used for simulation and analysis can be found at https://github.com/maslov-group/Thermodynamics_functional_convergence.git.

References

  1. Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9.

    Article  CAS  PubMed  Google Scholar 

  2. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jessen GL, Lichtschlag A, Ramette A, Pantoja S, Rossel PE, Schubert CJ, et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci. Adv. 2017;3:e1601897.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jørgensen BB, Boetius A. Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol. 2007;5:770–81.

    Article  PubMed  Google Scholar 

  5. Leng L, Yang P, Singh S, Zhuang H, Xu L, Chen WH, et al. A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresour Technol. 2018;247:1095–106.

    Article  CAS  PubMed  Google Scholar 

  6. Hoh CY, Cord-Ruwisch R. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equiiibrium constant. Biotechnol Bioeng. 1996;51:8.

    Article  Google Scholar 

  7. Hoh C-Y, Cord-Ruwisch R. Experimental evidence for the need of thermodynamic considerations in modelling of anaerobic environmental bioprocesses. Water Sci Technol. 1997;36:7.

    Article  Google Scholar 

  8. Nobu MK, Narihiro T, Mei R, Kamagata Y, Lee PKH, Lee PH, et al. Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses. Microbiome. 2020;8:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradley JA, Arndt S, Amend JP, Burwicz E, Dale AW, Egger M, et al. Widespread energy limitation to life in global subseafloor sediments. Sci Adv. 2020;6:eaba0697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conrad R, Schink B, Phelps T. Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol Lett. 1986;38:353–60.

    Article  CAS  Google Scholar 

  11. Hickey RF, Switzenbaum MS. Thermodynamics of volatile fatty acid accumulation in anaerobic digesters subject to increases in hydraulic and organic loading. Res J Water Pollut Control Fed. 1991;63:141–4.

    CAS  Google Scholar 

  12. Jackson BE, McInerney MJ. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature. 2002;415:454–6.

    Article  CAS  PubMed  Google Scholar 

  13. LaRowe DE, Amend JP. The energetics of fermentation in natural settings. Geomicrobiol J. 2019;36:492–505.

    Article  CAS  Google Scholar 

  14. LaRowe DE, Dale AW, Amend JP, Van Cappellen P. Thermodynamic limitations on microbially catalyzed reaction rates. Geochim Cosmochim Acta. 2012;90:96–109.

    Article  CAS  Google Scholar 

  15. Lomstein BA, Langerhuus AT, D’Hondt S, Jørgensen BB, Spivack AJ. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature. 2012;484:101–4.

    Article  CAS  PubMed  Google Scholar 

  16. Park H, Rosenthal A, Jezek R, Ramalingam K, Fillos J, Chandran K. Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities. Water Res. 2010;44:5005–13.

    Article  CAS  PubMed  Google Scholar 

  17. Sottile W, Zabransky RJ. Comparative growth rates of selected anaerobic species in four commonly used broth media. Antimicrob Agents Chemother. 1977;11:482–90.

    Article  PubMed  PubMed Central  Google Scholar 

  18. MacArthur R. Species packing and competitive equilibrium for many species. Theor Popul Biol. 1970;1:1–11.

    Article  CAS  PubMed  Google Scholar 

  19. Posfai A, Taillefumier T, Wingreen NS. Metabolic trade-offs promote diversity in a model ecosystem. Phys Rev Lett. 2017;118:028103.

  20. Tikhonov M, Monasson R. Collective phase in resource competition in a highly diverse ecosystem. Phys Rev Lett. 2017;118:048103.

  21. Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marsland R, Cui W, Mehta P. The minimum environmental perturbation principle: a new perspective on niche theory. Am Nat. 2020;196:291–305.

    Article  PubMed  Google Scholar 

  23. Dubinkina V, Fridman Y, Pandey PP, Maslov S. Multistability and regime shifts in microbial communities explained by competition for essential nutrients. eLife. 2019;8:e49720.

  24. Wang Z, Goyal A, Dubinkina V, George AB, Wang T, Fridman Y, et al. Complementary resource preferences spontaneously emerge in diauxic microbial communities. Nat Commun. 2021;12:6661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morita R. The starvation-survival state of microorganisms in nature and its relationship to the bioavailable energy. Experientia. 1990;46:813–817.

    Article  Google Scholar 

  26. Morita RY. Bacteria in oligotrophic environments. New York: Chapman & Hall; 1997.

  27. Hoehler TM, Jørgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.

    Article  CAS  PubMed  Google Scholar 

  28. Großkopf T, Soyer OS. Microbial diversity arising from thermodynamic constraints. ISME J. 2016;10:2725–33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cook J, Pawar S, Endres RG. Thermodynamic constraints on the assembly and diversity of microbial ecosystems are different near to and far from equilibrium. PLoS Comput Biol. 2021;17:e1009643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C, et al. How stable Is stable? function versus community composition. Appl Environ Microbiol. 1999;65:3697–704.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.

    Article  CAS  PubMed  Google Scholar 

  32. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.

    Article  PubMed  Google Scholar 

  33. Peces M, Astals S, Jensen P, Clarke W. Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Res. 2018;141:366–76.

    Article  CAS  PubMed  Google Scholar 

  34. Dewar RC, Maritan A. A theoretical basis for maximum entropy production. In: Dewar RC, Lineweaver CH, Niven RK, Regenauer-Lieb K, editors. Beyond the second law (Understanding complex systems). Berlin, Heidelberg: Springer; 2014. p. 49–71.

  35. Jin Q, Bethke CM. The thermodynamics and kinetics of microbial metabolism. Am J Sci. 2007;307:643–77.

    Article  CAS  Google Scholar 

  36. Wachtel A, Rao R, Esposito M. Thermodynamically consistent coarse graining of biocatalysts beyond Michaelis-Menten. New J Phys. 2018;20:042002.

    Article  Google Scholar 

  37. Milo R, Phillips R. Cell biology by the numbers. New York, NY: Garland Science, Taylor & Francis Group; 2016.

  38. Krieger CJ. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 2004;32:D438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marsland R, Cui W, Goldford J, Sanchez A, Korolev K, Mehta P. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput Biol. 2019;15:e1006793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fant L, Macocco I, Grilli J. Eco-evolutionary dynamics lead to functionally robust and redundant communities. Ecology. 2021. [Preprint]. Available from: https://doi.org/10.1101/2021.04.02.438173.

  41. Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61:19.

    Google Scholar 

  42. Cornish-Bowden A. Fundamentals of enzyme kinetics. 4th ed. Weinheim, Germany: Wiley-Blackwell; 2012.

  43. Noor E, Flamholz A, Liebermeister W, Bar-Even A, Milo R. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. FEBS Lett. 2013;587:2772–7.

    Article  CAS  PubMed  Google Scholar 

  44. Jin Q, Bethke CM. A new rate law describing microbial respiration. Appl Environ Microbiol. 2003;69:2340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoehler TM, Alperin MJ, Albert DB, Martens CS. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim Cosmochim Acta. 1998;62:1745–56.

    Article  CAS  Google Scholar 

  46. Westermann P. The effect of incubation temperature on steady-state concentrations of hydrogen and volatile fatty acids during anaerobic degradation in slurries from wetland sediments. FEMS Microbiol Ecol. 1994;13:295–302.

    Article  CAS  Google Scholar 

  47. Dwyer DF, Weeg-Aerssens E, Shelton DR, Tiedje JM. Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl Environ Microbiol. 1988;54:1354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci Rev. 2013;123:53–86.

    Article  CAS  Google Scholar 

  49. Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry. 2011;50:4402–10.

    Article  CAS  PubMed  Google Scholar 

  50. George AB, Korolev KS. Ecological landscapes guide the assembly of optimal microbial communities. PLoS Comput Biol. 2023;19:e1010570.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mentges A, Feenders C, Deutsch C, Blasius B, Dittmar T. Long-term stability of marine dissolved organic carbon emerges from a neutral network of compounds and microbes. Sci Rep. 2019;9:17780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prim RC. Shortest connection networks and some generalizations. Bell Syst Tech J. 1957;36:1389–401.

    Article  Google Scholar 

  53. Peces M, Astals S, Jensen PD, Clarke WP. Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time. New Biotechnol. 2021;60:52–61.

    Article  CAS  Google Scholar 

  54. Zhou J, Liu W, Deng Y, Jiang YH, Xue K, He Z, et al. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. mBio. 2013;4:e00584-12.

    Article  Google Scholar 

  55. Schink B, Stams AJM. Syntrophism among Prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes: volume 2: ecophysiology and biochemistry. New York, NY: Springer; 2006. p. 309–35.

  56. Hoehler TM. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology. 2004;2:205–15.

    Article  Google Scholar 

  57. Hoehler TM, Alperin MJ, Albert DB, Martens CS. Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol. 2001;38:33–41.

    Article  CAS  Google Scholar 

  58. Krylova NI, Conrad R. Thermodynamics of propionate degradation in methanogenic paddy soil. FEMS Microbiol Ecol. 1998;26:281–8.

    Article  CAS  Google Scholar 

  59. Kreft J-U, Griffin BM, González-Cabaleiro R. Evolutionary causes and consequences of metabolic division of labour: why anaerobes do and aerobes don’t. Curr Opin Biotechnol. 2020;62:80–7.

    Article  CAS  PubMed  Google Scholar 

  60. Louca S, Scranton MI, Taylor GT, Astor YM, Crowe SA, Doebeli M. Circumventing kinetics in biogeochemical modeling. Proc Natl Acad Sci USA. 2019;116:11329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zakem EJ, Cael BB, Levine NM. A unified theory for organic matter accumulation. Proc Natl Acad Sci USA. 2021;118:e2016896118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Louca S, Taylor GT, Astor YM, Buck KN, Muller-Karger FE. Transport-limited reactions in microbial systems. Environ Microbiol. 2022;25:268–82.

  63. Kleerebezem R, Van Loosdrecht MCM. A generalized method for thermodynamic state analysis of environmental systems. Crit Rev Environ Sci Technol. 2010;40:1–54.

    Article  Google Scholar 

  64. von Stockar U, Maskow T, Liu J, Marison IW, Patiño R. Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol. 2006;121:517–33.

    Article  Google Scholar 

  65. Roden EE, Jin Q. Thermodynamics of microbial growth coupled to metabolism of glucose, ethanol, short-chain organic acids, and hydrogen. Appl Environ Microbiol. 2011;77:1907–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heijnen JJ, Van Dijken JP. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng. 1992;39:833–58.

    Article  CAS  PubMed  Google Scholar 

  67. Liu J-S, Vojinović V, Patiño R, Maskow T, von Stockar U. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields. Thermochim Acta. 2007;458:38–46.

    Article  CAS  Google Scholar 

  68. Delattre H, Desmond-Le Quéméner E, Duquennoi C, Filali A, Bouchez T. Consistent microbial dynamics and functional community patterns derived from first principles. ISME J. 2019;13:263–76.

    Article  PubMed  Google Scholar 

  69. González-Cabaleiro R, Ofiţeru ID, Lema JM, Rodríguez J. Microbial catabolic activities are naturally selected by metabolic energy harvest rate. ISME J. 2015;9:2630–41.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Henry CS, Broadbelt LJ, Hatzimanikatis V. Thermodynamics-based metabolic flux analysis. Biophys J. 2007;92:1792–805.

    Article  CAS  PubMed  Google Scholar 

  71. Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc Natl Acad Sci USA. 2013;110:10039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goldford JE, George AB, Flamholz AI, Segrè D. Protein cost minimization promotes the emergence of coenzyme redundancy. Proc Natl Acad Sci USA. 2022;119:e2110787119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schneider E, Kay J. Life as a manifestation of the second law of thermodynamics. Math Comput Model. 1994;19:25–48.

    Article  Google Scholar 

  74. Vallino JJ. Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. Phil Trans R Soc B. 2010;365:1417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meysman FJR, Bruers S. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Phil Trans R Soc B. 2010;365:1405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Noor E, Haraldsdóttir HS, Milo R, Fleming RMT. Consistent estimation of Gibbs energy using component contributions. PLoS Comput Biol. 2013;9:e1003098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jinich A, Flamholz A, Ren H, Kim SJ, Sanchez-Lengeling B, Cotton CAR, et al. Quantum chemistry reveals thermodynamic principles of redox biochemistry. PLoS Comput Biol. 2018;14:e1006471.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jinich A, Sanchez-Lengeling B, Ren H, Harman R, Aspuru-Guzik A. A mixed quantum chemistry/machine learning approach for the fast and accurate prediction of biochemical redox potentials and its large-scale application to 315 000 redox reactions. ACS Cent. Sci. 2019;5:1199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McCarty PL. Energetics and bacterial growth. In: Faust SD, Hunter JV, editors. Organic compounds in aquatic environments. New York: Marcel Dekker; 1971. p. 91–113.

  81. Endres D, Schindelin J. A new metric for probability distributions. IEEE Trans Inform Theory. 2003;49:1858–60.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Avi Flamholz for valuable comments and feedback on the manuscript. This research was supported in part by NSF Grant No. PHY-1748958 and the Gordon and Betty Moore Foundation Grant No. 2919.02.

Author information

Authors and Affiliations

Authors

Contributions

All authors helped devise the study; ABG performed the research and analyzed the data; SM supervised the research; ABG wrote the manuscript with help from SM and TW.

Corresponding author

Correspondence to Sergei Maslov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, A.B., Wang, T. & Maslov, S. Functional convergence in slow-growing microbial communities arises from thermodynamic constraints. ISME J 17, 1482–1494 (2023). https://doi.org/10.1038/s41396-023-01455-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01455-4

Search

Quick links