Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Clinical Research
  • Published:

Tumor B7-H3 expression in diagnostic biopsy specimens and survival in patients with metastatic prostate cancer

Abstract

Background

Prostate cancer spans a broad spectrum from indolent to deadly disease. In the management of prostate cancer, diagnostic biopsy specimens are important sources of data that inform the selection of treatment. B7-H3 (CD276), an immune checkpoint molecule, has emerged as a promising immunotherapy target. B7-H3 expression is related to adverse clinical outcomes in various types of cancer; however, little is known concerning the association between tumor B7-H3 expression in diagnostic biopsy specimens and clinical outcome in patients with metastatic prostate cancer.

Methods

We evaluated tumor B7-H3 expression levels in diagnostic biopsy specimens from 135 patients with metastatic prostate cancer and 113 patients with localized prostate cancer.

Results

High B7-H3 expression was more frequently observed in patients with metastatic cancer than in those with localized cancer (31 vs. 12%; p = 0.0003). In patients with localized cancer, the B7-H3 expression status was not associated with biochemical recurrence-free survival. However, among patients with metastatic cancer, high B7-H3 expression was independently associated with high disease-specific mortality (multivariable hazard ratio [HR] = 2.72; p = 0.047) and overall mortality rates (multivariable HR = 2.04; p = 0.025).

Conclusions

Tumor B7-H3 expression in diagnostic biopsy specimens may be a useful biomarker for identifying highly aggressive metastatic prostate cancer. Given the potential utility of anti-B7-H3 immunotherapy, this information may aid in stratifying prostate cancer based on its responsiveness to B7-H3-targeted treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunohistochemical analysis of membranous tumor B7-H3 expression in diagnostic biopsy specimens.
Fig. 2: Kaplan–Meier curves for survival in patients with metastatic prostate cancer according to tumor B7-H3 expression status (low vs. high).
Fig. 3: Kaplan–Meier curves for disease-specific survival in patients with metastatic prostate cancer according to tumor B7-H3 expression status (low vs. high) stratified by patient age (<70 years vs. ≥70 years).

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  2. Sathianathen NJ, Konety BR, Crook J, Saad F, Lawrentschuk N. Landmarks in prostate cancer. Nat Rev Urol. 2018;15:627–42.

    Article  PubMed  Google Scholar 

  3. Hoogland AM, Kweldam CF, van Leenders GJ. Prognostic histopathological and molecular markers on prostate cancer needle-biopsies: a review. Biomed Res Int. 2014;2014:341324.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boettcher AN, Usman A, Morgans A, VanderWeele DJ, Sosman J, Wu JD. Past current, and future of immunotherapies for prostate cancer. Front Oncol. 2019;9:884.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miller AM, Pisa P. Tumor escape mechanisms in prostate cancer. Cancer Immunol Immunother. 2007;56:81–7.

    Article  CAS  PubMed  Google Scholar 

  7. Comiskey MC, Dallos MC, Drake CG. Immunotherapy in prostate cancer: teaching an old dog new tricks. Curr Oncol Rep. 2018;20:75.

    Article  PubMed  CAS  Google Scholar 

  8. Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB, et al. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell. 2017;31:501–15 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du H, Hirabayashi K, Ahn S, Kren NP, Montgomery SA, Wang X, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor t cells. Cancer Cell. 2019;35:221–37.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flem-Karlsen K, Fodstad Y, Nunes-Xavier CE. B7-H3 immune checkpoint protein in human cancer. Curr Med Chem. 2019;19:180–5.

    Article  CAS  Google Scholar 

  11. Flem-Karlsen K, Fodstad Ø, Tan M, Nunes-Xavier CE. B7-H3 in cancer—beyond immune regulation. Trends Cancer. 2018;4:401–4.

    Article  CAS  PubMed  Google Scholar 

  12. Castellanos JR, Purvis IJ, Labak CM, Guda MR, Tsung AJ, Velpula KK, et al. B7-H3 role in the immune landscape of cancer. Am J Clin Exp Immunol. 2017;6:66–75.

    PubMed  PubMed Central  Google Scholar 

  13. Roth TJ, Sheinin Y, Lohse CM, Kuntz SM, Frigola X, Inman BA, et al. B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 2007;67:7893–900.

    Article  CAS  PubMed  Google Scholar 

  14. Benzon B, Zhao SG, Haffner MC, Takhar M, Erho N, Yousefi K, et al. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis. Prostate Cancer Prostatic Dis. 2017;20:28–35.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Vlatkovic L, Saeter T, Servoll E, Waaler G, Nesland JM, et al. Is the clinical malignant phenotype of prostate cancer a result of a highly proliferative immune-evasive B7-H3-expressing cell population? Int J Urol. 2012;19:749–56.

    Article  PubMed  Google Scholar 

  16. Zang X, Thompson RH, Al-Ahmadie HA, Serio AM, Reuter VE, Eastham JA, et al. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci USA. 2007;104:19458–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Inamura K, Takazawa Y, Inoue Y, Yokouchi Y, Kobayashi M, Saiura A, et al. Tumor B7-H3 (CD276) expression and survival in pancreatic cancer. J Clin Med. 2018;7:172.

    Article  PubMed Central  CAS  Google Scholar 

  18. Inamura K, Yokouchi Y, Kobayashi M, Sakakibara R, Ninomiya H, Subat S, et al. Tumor B7-H3 (CD276) expression and smoking history in relation to lung adenocarcinoma prognosis. Lung Cancer. 2017;103:44–51.

    Article  PubMed  Google Scholar 

  19. Inamura K, Amori G, Yuasa T, Yamamoto S, Yonese J, Ishikawa Y. Relationship of B7-H3 expression in tumor cells and tumor vasculature with FOXP3+ regulatory T cells in renal cell carcinoma. Cancer Manag Res. 2019;11:7021–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanda MG, Restifo NP, Walsh JC, Kawakami Y, Nelson WG, Pardoll DM, et al. Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst. 1995;87:280–5.

    Article  CAS  PubMed  Google Scholar 

  21. Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 2005;35:169–73.

    Article  CAS  PubMed  Google Scholar 

  22. Shafer-Weaver KA, Anderson MJ, Stagliano K, Malyguine A, Greenberg NM, Hurwitz AA. Cutting edge: tumor-specific CD8+ T cells infiltrating prostatic tumors are induced to become suppressor cells. J Immunol. 2009;183:4848–52.

    Article  CAS  PubMed  Google Scholar 

  23. Pasero C, Gravis G, Guerin M, Granjeaud S, Thomassin-Piana J, Rocchi P, et al. Inherent and tumor-driven immune tolerance in the prostate microenvironment impairs natural killer cell antitumor activity. Cancer Res. 2016;76:2153–65.

    Article  CAS  PubMed  Google Scholar 

  24. Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, et al. CD4+CD25 high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol. 2006;177:7398–405.

    Article  CAS  PubMed  Google Scholar 

  25. Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM, et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res. 2008;14:3254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. 2001;2:269–74.

    Article  CAS  PubMed  Google Scholar 

  27. Ceeraz S, Nowak EC, Noelle RJ. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. 2013;34:556–63.

    Article  CAS  PubMed  Google Scholar 

  28. Kontos F, Michelakos T, Kurokawa T, Sadagopan A, Schwab JH, Ferrone CR, et al. B7-H3: an attractive target for antibody-based immunotherapy. Clin Cancer Res. 2020. https://doi.org/10.1158/1078-0432.CCR-20-2584.

  29. Prasad DV, Nguyen T, Li Z, Yang Y, Duong J, Wang Y, et al. Murine B7-H3 is a negative regulator of T cells. J Immunol. 2004;173:2500–6.

    Article  CAS  PubMed  Google Scholar 

  30. Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol. 2003;4:899–906.

    Article  CAS  PubMed  Google Scholar 

  31. Picarda E, Ohaegbulam KC, Zang X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin Cancer Res. 2016;22:3425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suh WK, Wang SX, Jheon AH, Moreno L, Yoshinaga SK, Ganss B, et al. The immune regulatory protein B7-H3 promotes osteoblast differentiation and bone mineralization. Proc Natl Acad Sci USA. 2004;101:12969–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu Z, Zhao ZX, Cheng P, Huang F, Guan X, Zhang MG, et al. B7-H3 immune checkpoint expression is a poor prognostic factor in colorectal carcinoma. Mod Pathol. 2020;33:2330–40.

    Article  CAS  PubMed  Google Scholar 

  34. Yim J, Koh J, Kim S, Song SG, Ahn HK, Kim YA, et al. Effects of B7-H3 expression on tumour-infiltrating immune cells and clinicopathological characteristics in non-small-cell lung cancer. Eur J Cancer. 2020;133:74–85.

    Article  CAS  PubMed  Google Scholar 

  35. Lee YH, Martin-Orozco N, Zheng P, Li J, Zhang P, Tan H, et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 2017;27:1034–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Tekle C, Chen YW, Kristian A, Zhao Y, Zhou M, et al. B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation. Mol Cancer Ther. 2011;10:960–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nunes-Xavier CE, Karlsen KF, Tekle C, Pedersen C, Øyjord T, Hongisto V, et al. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors. Oncotarget. 2016;7:6891–901.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tekle C, Nygren MK, Chen YW, Dybsjord I, Nesland JM, Maelandsmo GM, et al. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes. Int J Cancer. 2012;130:2282–90.

    Article  CAS  PubMed  Google Scholar 

  39. Zupancic M, Pospihalj B, Cerovic S, Gazic B, Drev P, Hocevar M, et al. Significance of nuclear factor—kappa beta activation on prostate needle biopsy samples in the evaluation of Gleason score 6 prostatic carcinoma indolence. Radio Oncol. 2020;54:194–200.

    Article  CAS  Google Scholar 

  40. Zinger A, Cho WC, Ben-Yehuda A. Cancer and aging—the inflammatory connection. Aging Dis. 2017;8:611–27.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yuan H, Wei X, Zhang G, Li C, Zhang X, Hou J. B7-H3 over expression in prostate cancer promotes tumor cell progression. J Urol. 2011;186:1093–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kreymborg K, Haak S, Murali R, Wei J, Waitz R, Gasteiger G, et al. Ablation of B7-H3 but not B7-H4 results in highly increased tumor burden in a murine model of spontaneous prostate cancer. Cancer Immunol Res. 2015;3:849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Motoyoshi Iwakoshi, Ms. Miyuki Kogure, Ms. Tomoyo Kakita, and Mr. Shuhei Ishii for their technical assistance, and Ms. Kyoko Yamada and Ms. Yuki Takano for their secretarial expertise. The authors thank Daiichi Sankyo Co., Ltd. for providing us with anti-B7-H3 antibody (clone: BD/5A11) and B7-H3 subfamily cell array.

Funding information

This study was supported financially by JSPS KAKENHI Grant Number 19K07426 (to KI), Takeda Science Foundation (to KI), The Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care (to KI), The Mochida Memorial Foundation for Medical and Pharmaceutical Research (to KI), and Suzuki Foundation for Urological Medicine (to KI).

Author information

Authors and Affiliations

Authors

Contributions

KI conceived and designed the study. GA, ES, YS, MA, JK, TY, SY, JY, KT, and KI contributed to the acquisition of clinical and tumor tissue data. KI performed data analyses. GA, ES, YS, MA, JK, and KI contributed to the interpretation of the findings. GA and KI drafted the manuscript. All authors contributed to revisions of the manuscript and read and approved the final draft.

Corresponding author

Correspondence to Kentaro Inamura.

Ethics declarations

Conflict of interest

KI received research grants from Konica Minolta, Inc. and Daiichi Sankyo Co., Ltd. TY received remuneration for a lecture from Astellas, Sanofi Japan, Pfizer Japan, Novartis Pharma Japan, Ono Pharma, Bristol-Myers Squibb Japan, and Daiichi Sankyo. All other authors declare no conflict of interest.

Ethical approval and consent to participate

This study was performed with the approval of the institutional review board of Japanese Foundation for Cancer Research (ethic code: 2018-1177). All patients included in this study provided informed consent for the research. This study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amori, G., Sugawara, E., Shigematsu, Y. et al. Tumor B7-H3 expression in diagnostic biopsy specimens and survival in patients with metastatic prostate cancer. Prostate Cancer Prostatic Dis 24, 767–774 (2021). https://doi.org/10.1038/s41391-021-00331-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-021-00331-6

This article is cited by

Search

Quick links