Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A systematic review and meta-analysis of the diagnostic accuracy of biparametric prostate MRI for prostate cancer in men at risk

Abstract

Introduction

Multiparametric magnetic resonance imaging (mpMRI), the use of three multiple imaging sequences, typically T2-weighted, diffusion weighted (DWI) and dynamic contrast enhanced (DCE) images, has a high sensitivity and specificity for detecting significant cancer. Current guidance now recommends its use prior to biopsy. However, the impact of DCE is currently under debate regarding test accuracy. Biparametric MRI (bpMRI), using only T2 and DWI has been proposed as a viable alternative. We conducted a contemporary systematic review and meta-analysis to further examine the diagnostic performance of bpMRI in the diagnosis of any and clinically significant prostate cancer.

Methods

A systematic review of the literature from 01/01/2017 to 06/07/2019 was performed by two independent reviewers using predefined search criteria. The index test was biparametric MRI and the reference standard whole-mount prostatectomy or prostate biopsy. Quality of included studies was assessed by the QUADAS-2 tool. Statistical analysis included pooled diagnostic performance (sensitivity; specificity; AUC), meta-regression of possible covariates and head-to-head comparisons of bpMRI and mpMRI where both were performed in the same study.

Results

Forty-four articles were included in the analysis. The pooled sensitivity for any cancer detection was 0.84 (95% CI, 0.80–0.88), specificity 0.75 (95% CI, 0.68–0.81) for bpMRI. The summary ROC curve yielded a high AUC value (AUC = 0.86). The pooled sensitivity for clinically significant prostate cancer was 0.87 (95% CI, 0.78–0.93), specificity 0.72 (95% CI, 0.56–0.84) and the AUC value was 0.87. Meta-regression analysis revealed no difference in the pooled diagnostic estimates between bpMRI and mpMRI.

Conclusions

This meta-analysis on contemporary studies shows that bpMRI offers comparable test accuracies to mpMRI in detecting prostate cancer. These data are broadly supportive of the bpMRI approach but heterogeneity does not allow definitive recommendations to be made. There is a need for prospective multicentre studies of bpMRI in biopsy naïve men.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study selection.
Fig. 2: Study bias assessment.
Fig. 3: Sensitivity of Biparametric MRI for detecting all prostate cancer.
Fig. 4: Specificity of Biparametric MRI for detecting all prostate cancer.
Fig. 5: Diagnostic test accuracy of BpMRI for detecting all PCa.
Fig. 6: Diagnostic test accuracy of BpMRI for detecting csPCa.
Fig. 7: Summary ROC curve (bivariate model) for diagnostic test accuracy of all PCa for.

Similar content being viewed by others

Code availability

Example R code used for this analysis is found in a statistical methodology paper by Shim et al. [81].

References

  1. Ahmed HU, EL-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017;389:815–22.

    Article  PubMed  Google Scholar 

  2. Gandaglia G, Briganti A, Fossati N, Salonia A, Mottrie A, Catto J, et al. The problem is not what to do with indolent and harmless prostate cancer—the problem is how to avoid finding these cancers. Eur Urol. 2016;70:547–8.

    Article  PubMed  Google Scholar 

  3. Etzioni R, Penson DF, Legler JM, di Tommaso D, Boer R, Gann PH, et al. Overdiagnosis due to prostate-specific antigen screening: Lessons from U.S. prostate cancer incidence trends. J Natl Cancer Inst. 2002;94:981–90.

    Article  PubMed  Google Scholar 

  4. Futterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A, et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol. 2015;68:1045–53.

    Article  PubMed  Google Scholar 

  5. Woo S, Suh CH, Kim SY, Cho JY, Kim SH, Moon MH. Head-to-head comparison between biparametric and multiparametric MRI for the diagnosis of prostate cancer: a systematic review and meta-analysis. Am J Roentgenol. 2018;211:W226–41.

    Article  Google Scholar 

  6. Drost FH, Osses D, Nieboer D, Bangma CH, Steyerberg EW, Roobol MJ, et al. Prostate magnetic resonance imaging, with or without magnetic resonance imaging-targeted biopsy, and systematic biopsy for detecting prostate cancer: a Cochrane systematic review and meta-analysis. Eur Urol. 2020;77:78–94.

    Article  PubMed  Google Scholar 

  7. National Institute for Health and Care Excellence. Prostate cancer: diagnosis and management, NICE guideline [NG131]. 2019. https://www.nice.org.uk/guidance/ng131. Accessed 6 May 2020.

  8. European Association of Urology. Guidelines: prostate cancer. 2018. https://uroweb.org/guideline/prostate-cancer/?type=summary-of-changes. Accessed 6 May 2020.

  9. Bjurlin MA, Carroll PR, Eggener S, Fulgham PF, Margolis DJ, Pinto PA, et al. Update of the standard operating procedure on the use of multiparametric magnetic resonance imaging for the diagnosis, staging and management of prostate cancer. J Urol. 2020;203:706–12.

    Article  PubMed  Google Scholar 

  10. Bosaily AES, Frangou E, Ahmed HU, Emberton M, Punwani E, Kaplan R, et al. Additional value of dynamic contrast-enhanced sequences in multiparametric prostate magnetic resonance imaging: data from the PROMIS study. Eur Urol. 2020. https://doi.org/10.1016/j.eururo.2020.03.002.

  11. Zawaideh JP, Sala E, Shaida N, Koo B, Warren AY, Carmisciano L, et al. Diagnostic accuracy of biparametric versus multiparametric prostate MRI: assessment of contrast benefit in clinical practice. Eur Radiol. 2020. https://doi.org/10.1007/s00330-020-06782-0.

  12. Cosma I, Tennstedt-Schenk C, Winzler S, Psychogios MN, Pfeil A, Teichgraeber U, et al. The role of gadolinium in magnetic resonance imaging for early prostate cancer diagnosis: a diagnostic accuracy study. PLoS ONE. 2019;14:e0227031. https://doi.org/10.1371/journal.pone.0227031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol. 2014;202:343–51.

    Article  Google Scholar 

  14. Tan CH, Hobbs BP, Wei W, Kundra V. Dynamic contrast-enhanced MRI for the detection of prostate cancer: meta-analysis. Am J Roentgenol. 2016;204:W439–48.

    Article  Google Scholar 

  15. Boesen L, Nørgaard N, Løgager V, Balslev I, Bisbjerg R, Thestrup KC. et al. Assessment of the diagnostic accuracy of biparametric magnetic resonance imaging for prostate cancer in biopsy-naïve men: the biparametric MRI for detection of prostate cancer (BIDOC) study. JAMA Netw Open. 2019;1:e180219. https://doi.org/10.1001/jamanetworkopen.2018.0219.

    Article  Google Scholar 

  16. American College of Radiology. ACR Committee on Drugs and Contrast Media. https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf. Accessed 6 May 2020.

  17. Niu XK, Chen XH, Chen ZF, Chen L, Li J, Peng T. Diagnostic performance of biparametric MRI for detection of prostate cancer: a systematic review and meta-analysis.Am J Roentgenol. 2018;211:369–78.

    Article  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG.PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.

    Article  PubMed  Google Scholar 

  20. Leeflang MM, Deeks JJ, Takwoingi Y, Macaskill P. Cochrane diagnostic test accuracy reviews. Syst Rev. 2013;2:82.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid-Based Ment Health. 2019;22:153–60.

    Article  PubMed  Google Scholar 

  22. Shimofusa R, Fujimoto H, Akamata H, Motoori K, Yamamoto S, Ueda T, et al. Diffusion-weighted imaging of prostate cancer. J Comput Assist Tomogr. 2005;29:149–53.

    Article  PubMed  Google Scholar 

  23. Tanimoto A, Nakashima J, Kohno H, Shinmoto H, Kuribayashi S. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging. 2007;25:146–62.

    Article  PubMed  Google Scholar 

  24. Delongchamps NB, Beuvon F, Eiss D, Flam T, Muradyan M, Zerbib M, et al. Multiparametric MRI is helpful to predict tumor focality, stage, and size in patients diagnosed with unilateral low-risk prostate cancer. Prostate Cancer Prostatic Dis. 2011;14:232–7.

    Article  CAS  PubMed  Google Scholar 

  25. Vargas HA, Akin O, Franiel T, Mazaheri Y, Zheng J, Moskowitz C, et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology. 2011;259:775–84.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vilanova JC, Barceló-Vidal C, Comet J, Boada M, Barcelo J, Ferrer J, et al. Usefulness of prebiopsy multifunctional and morphologic MRI combined with free-to-total prostate specific antigen ratio in the detection of prostate cancer. Am J Roentgenol. 2011;196:W715–22.

    Article  Google Scholar 

  27. Jung SI, Donati OF, Vargas HA, Goldman D, Hricak H, Akin O. Transition zone prostate cancer: incremental value of diffusion-weighted endorectal MR imaging in tumor detection and assessment of aggressiveness. Radiology. 2013;269:493–503.

    Article  PubMed  Google Scholar 

  28. Lawrence EM, Tang SY, Barrett T, Koo B, Goldman DA, Warren AY, et al. Prostate cancer: performance characteristics of combined T2W and DW-MRI scoring in the setting of template transperineal re-biopsy using MR-TRUS fusion. Eur Radio. 2014;24:1497–1505.

    Article  Google Scholar 

  29. Thestrup KC, Logager V, Baslev I, Møller JM, Hansen RH, Thomsen HS. Biparametric versus multiparametric MRI in the diagnosis of prostate cancer. Acta Radio Open. 2016;5:2058460116663046.

    Google Scholar 

  30. Barth BK, De Visschere PJ, Cornelius A, Nicolau C, Vargas HA, Eberli D, et al. Detection of clinically significant prostate cancer: short dual-pulse sequence versus standard multiparametric MR imaging—a multireader study. Radiology. 2017;284:725–36.

    Article  PubMed  Google Scholar 

  31. Mussi TC, Martins T, Garcia RG, Filippi RZ, Lemos GC, Baroni RH. Are dynamic contrast-enhanced images necessary for prostate cancer detection on multiparametric magnetic resonance imaging? Clin Genitourin Cancer. 2017;15:e447–54.

    Article  PubMed  Google Scholar 

  32. Scialpi M, Prosperi E, D’Andrea A, Martorana E, Malaspina C, Palumbo B, et al. Biparametric versus multiparametric MRI with non-endorectal coil at 3T in the detection and localization of prostate cancer. Anticancer Res. 2017;37:1263–71.

    Article  PubMed  Google Scholar 

  33. Kuhl CK, Bruhn R, Krämer N, Nebelung S, Heindenreich A, Schrading S. Abbreviated biparametric prostate MR Imaging in men with elevated prostate-specific antigen. Radiology. 2017;285:493–505.

    Article  PubMed  Google Scholar 

  34. Lee SJ, Oh YT, Jung DC, Cho NH, Choi YD, Park SY. Combined analysis of biparametric MRI and prostate-specific antigen density: role in the prebiopsy diagnosis of Gleason Score 7 or greater prostate cancer. Am J Roentgenol. 2018;211:W166–72.

    Article  Google Scholar 

  35. Kim SH, Choi MS, Kim MJ, Kim YH, Cho SH. Validation of prostate imaging reporting and data system version 2 using an MRI-ultrasound fusion biopsy in prostate cancer diagnosis. Am J Roentgenol. 2017;209:800–5.

    Article  Google Scholar 

  36. Choi MH, Lee YJ, Jung SE, Rha SE, Byun JY. Prebiopsy biparametric MRI: differences of PI-RADS version 2 in patients with different PSA levels. Clin Radio. 2018;73:810–7.

    Article  CAS  Google Scholar 

  37. Obmann VC, Pahwa S, Tabayayong W, Jiang Y, O’Connor G, Dastmalchian S, et al. Diagnostic accuracy of a rapid biparametric MRI protocol for detection of histologically proven prostate cancer. Urology. 2018;122:133–8.

    Article  PubMed  Google Scholar 

  38. Jambor I, Verho J, Ettala O, Knaapila J, Taimen P, Syvänen KT. et al. Validation of IMPROD biparametric MRI in men with clinically suspected prostate cancer: a prospective multi-institutional trial. PLoS Med. 2019;16:e1002813. https://doi.org/10.1371/journal.pmed.1002813.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Van der Leest M, Israël B, Cornel EB, Zámecnik P, Schoots IO, van der Lelij H, et al. High diagnostic performance of short magnetic resonance imaging protocols for prostate cancer detection in biopsy-naïve men: the next step in magnetic resonance imaging accessibility. Eur Urol. 2019;76:574–81.

    Article  PubMed  Google Scholar 

  40. Gatti M, Faletti R, Calleris G, Giglio J, Berzovini C, Gentile F, et al. Prostate cancer detection with biparametric magnetic resonance imaging (bpMRI) by readers with different experience: performance and comparison with multiparametric (mpMRI). Abdom Radio (NY). 2019;44:1883–93.

    Article  Google Scholar 

  41. Choi MH, Kim CK, Lee YJ, Jung SE. Prebiopsy biparametric MRI for clinically significant prostate cancer detection with PI-RADS version 2: a multicenter study. Am J Roentgenol. 2019;212:839–46.

    Article  Google Scholar 

  42. Junker D, Steinkohl F, Fritz V, Bektic J, Tokas T, Aigner F, et al. Comparison of multiparametric and biparametric MRI of the prostate: are gadolinium-based contrast agents needed for routine examinations? World J Urol. 2019;37:691–9.

    Article  PubMed  Google Scholar 

  43. Haider MA, van der Kwast TH, Tanguay J, Evans A, Hashmi AT, Lockwood G, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. Am J Roentgenol. 2007;189:323–8.

    Article  Google Scholar 

  44. Morgan VA, Kyriazi S, Ashley SE, DeSouza NM. Evaluation of the potential of diffusion-weighted imaging in prostate cancer detection. Acta Radio. 2007;48:695–703.

    Article  CAS  Google Scholar 

  45. Yoshimitsu K, Kiyoshima K, Irie H, Tajima T, Asayama Y, Kirakawa M, et al. Usefulness of apparent diffusion coefficient map in diagnosing prostate carcinoma: correlation with stepwise histopathology. J Magn Reson Imaging. 2008;27:132–9.

    Article  PubMed  Google Scholar 

  46. Yoshizako T, Wada A, Hayashi T, Uchida K, Sumura M, Uchida N, et al. Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radio. 2008;49:1207–13.

    Article  CAS  Google Scholar 

  47. Lim HK, Kim JK, Kim KA, Cho KS. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection: a multireader study. Radiology. 2009;250:145–51.

    Article  PubMed  Google Scholar 

  48. Kitajima K, Kaji Y, Fukabori Y, Yoshida K, Sugunuma N, Sugimura K. Prostate cancer detection with 3 T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J Magn Reson Imaging. 2010;31:625–31.

    Article  PubMed  Google Scholar 

  49. Franiel T, Stephan C, Erbersdobler A, Dietz E, Maxeiner A, Hell N, et al. Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding—multiparametric MR imaging for detection and biopsy planning. Radiology. 2011;259:162–72.

    Article  PubMed  Google Scholar 

  50. Katahira K, Takahara T, Kwee TC, Oda S, Suzuki Y, Morishita S, et al. Ultra-high- b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radio. 2011;21:188–96.

    Article  Google Scholar 

  51. Naiki T, Okamura T, Nagata D, Mori Y, Kawai N, Ogawa K, et al. Preoperative prediction of neurovascular bundle involvement of localized prostate cancer by combined T2 and diffusion-weighted imaging of magnetic resonance imaging, number of positive biopsy cores, and Gleason score. Asian Pac J Cancer Prev. 2011;12:909–13.

    PubMed  Google Scholar 

  52. Rosenkrantz AB, Mannelli L, Kong X, Niver BE, Berkman DS, Babb JS, et al. Prostate cancer: utility of fusion of T2-weighted and high b-value diffusion-weighted images for peripheral zone tumor detection and localization. J Magn Reson Imaging. 2011;34:95–100.

    Article  PubMed  Google Scholar 

  53. Doo KW, Sung DJ, Park BJ, Kim MJ, Cho SB, Oh YW, et al. Detectability of low and intermediate of high risk prostate cancer with combined T2-weighted and diffusion-weighted MRI. Eur Urol. 2012;22:1812–19.

    Google Scholar 

  54. Rinaldi D, Fiocchi F, Ligabue G, Bianchi G, Torricelli P. Role of diffusion-weighted magnetic resonance imaging in prostate cancer evaluation. Radio Med (Torino). 2012;117:1429–40.

    Article  CAS  Google Scholar 

  55. Ueno Y, Takahashi S, Kitajima K, Kimura T, Aoki I, Kawakami H, et al. Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis. Eur Radio. 2013;23:3509–16.

    Article  Google Scholar 

  56. Ueno Y, Kitajima K, Sugimura K, Kawakami F, Miyake H, Obara M, et al. Ultra-high b-value diffusion-weighted MRI for the detection of prostate cancer with 3-T MRI. J Magn Reson Imaging. 2013;38:154–60.

    Article  PubMed  Google Scholar 

  57. Abdel Maboud NM, Elsaid HH, Aboubeih EA. The role of diffusion-weighted MRI in evaluation of prostate cancer. Egypt J Radio Nucl Med. 2014;45:231–6.

    Article  Google Scholar 

  58. Kitamura K, Muto S, Yokota I, Hoshimoto K, Kaminaga T, Noguchi T, et al. Feasibility of multiparametric prostate magnetic resonance imaging in the detection of cancer distribution: histopathological correlation with prostatectomy specimens. Prostate Int. 2014;2:188–95.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brock M, Roghmann F, Sonntag C, Sommerer F, Tian Z, Löppenberg B, et al. Fusion of magnetic resonance imaging and real-time elastography to visualize prostate cancer: a prospective analysis using whole mount sections after radical prostatectomy. Ultraschall Med. 2015;36:355–61.

    CAS  PubMed  Google Scholar 

  60. Rais-Bahrami S, Siddiqui MM, Vourganti S, Turkbey B, Rastinehad AR, Stamatakis L, et al. Diagnostic value of biparametric magnetic resonance imaging (MRI) as an adjunct to prostate specific antigen (PSA)-based detection of prostate cancer in men without prior biopsies. BJU Int. 2015;115:381–8.

    Article  CAS  PubMed  Google Scholar 

  61. Fascelli M, Rais-Bahrami S, Sankineni S, Brown AM, George AK, Ho R, et al. Combined biparametric prostate magnetic resonance imaging and prostate-specific antigen in the detection of prostate cancer: a validation study in a biopsy-naive patient population. Urology. 2016;88:125–34.

    Article  PubMed  Google Scholar 

  62. Yağci AB, Ozari N, Aybek Z, Düzcan E. The value of diffusion-weighted MRI for prostate cancer detection and localization. Diagn Inter Radio. 2011;17:130–4.

    Google Scholar 

  63. Stanzione A, Imbriaco M, Cocozza S, Fusco F, Rusconi G, Nappi C, et al. Biparametric 3T magnetic resonance imaging for prostatic cancer detection in a biopsy-naïve patient population: a further improvement of PI-RADS v2? Eur J Radio. 2016;85:2269–74.

    Article  Google Scholar 

  64. Wang X, Wang JY, Li CM, Zhang YQ, Wang JL, Wan B, et al. Evaluation of the prostate imaging reporting and data system for magnetic resonance imaging diagnosis of prostate cancer in patients with prostate-specific antigen <20 ng/ml. Chin Med J (Engl). 2016;129:1432–8.

    Article  Google Scholar 

  65. Draisma G, Etzioni R, Tsodikov A, Mariotto A, Wever E, Gulati R, et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst. 2009;101:374–83.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Martin RM, Donovan JL, Turner EL, Metcalfe C, Young GJ, Walsh EI, et al. Screening intervention on prostate cancer mortality, the CAP randomized clinical trial. JAMA. 2018;319:883–95.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Negoita S, Feuer EJ, Mariotto A, Cronin KA, Petkov V, Hussey SK, et al. Annual report to the nation on the status of cancer, part II: Recent changes in prostate cancer trends and disease characteristics. Cancer. 2018;124:2801–14.

    Article  PubMed  Google Scholar 

  68. Scott S, Samaratunga H, Chabert C, Breckenbridge M, Gianduzzo T. Is transperineal prostate biopsy more accurate than transrectal biopsy in determining final Gleason score and clinical risk category? A comparative analysis. BJU Int. 2015;116(Suppl 3):26–30.

    Article  PubMed  Google Scholar 

  69. Jiang X, Zhu S, Feng G, Zhang Z, Li C, Li H, et al. Is an initial saturation prostate biopsy scheme better than an extended scheme for detection of prostate cancer? A systematic review and meta-analysis. Eur Urol. 2013;63:1031–9.

    Article  PubMed  Google Scholar 

  70. Altok M, Kim B, Patel BB, Shih YCT, Ward JF, McRae SE, et al. Cost and efficacy comparison of five prostate biopsy modalities: a platform for integrating cost into novel-platform comparative research. Prostate Cancer Prostatic Dis. 2018;21:524–32.

    Article  CAS  PubMed  Google Scholar 

  71. Giannarini G, Girometti R, Crestani A, Rossanese M, Calandriello M, Cereser L, et al. A prospective accuracy study of prostate imaging reporting and data system version 2 on multiparametric magnetic resonance imaging in detecting clinically significant prostate cancer with whole-mount pathology. Urology. 2019;123:191–7.

    Article  PubMed  Google Scholar 

  72. Elwenspoek MMC, Sheppard AL, McInnes MDF, Merriel SWD, Rowe EWJ, Bryant RJ. et al. Comparison of multiparametric magnetic resonance imaging and targeted biopsy with systematic biopsy alone for the diagnosis of prostate cancer: a systematic review and meta-analysis. JAMA Netw Open. 2019;2:e198427. https://doi.org/10.1001/jamanetworkopen.2019.8427.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Faria R, Soares MO, Spackman E, Ahmed HU, Brown LC, Kaplan R, et al. Optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the prostate MR imaging study (PROMIS). Eur Urol. 2018;73:23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hegde J, Mulkern R, Pahych L, Fennessy FM, Fedorov A, Maier SE, et al. Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and the performance in detecting and localizing prostate cancer. J Magn Reson Imaging. 2013;37:1035–54.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Torricelli P, Cinquantini F, Ligabue G, Bianchi G, Sighinolfi P, Romagnoli R. Comparative evaluation between external phased array coil at 3 T and endorectal coil at 1.5 T: preliminary results. J Comput Assist Tomogr. 2006;30:355–61.

    Article  PubMed  Google Scholar 

  76. Barth BK, Rupp NJ, Cornelius A, Nanz D, Grobholz R, Schmidtpeter M, et al. Diagnostic accuracy of a MR protocol acquired with and without endorectal coil for detection of prostate cancer: a multicenter study. Curr Urol. 2019;12:88–96.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fütterer JJ, Engelbrecht MR, Jager GJ, Hartman RP, King BF, Hulsbergen-Van de Kaa CA, et al. Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur Radio. 2007;17:1055–65.

    Article  Google Scholar 

  78. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging-reporting and data system: 2015, Version 2. Eur Urol. 2016;69:16–40.

    Article  PubMed  Google Scholar 

  79. Punwani S, Emberton M, Walkden M, Sohaib A, Freeman A, Ahmed H, et al. Prostatic cancer surveillance following whole-gland high-intensity focused ultrasound: comparison of MRI and prostate-specific antigen for detection of residual or recurrent disease. Br J Radio. 2012;85:720–8.

    Article  CAS  Google Scholar 

  80. Wu LM, Xu JR, Gu HY, Hua J, Zhu J, Chen J, et al. Role of magnetic resonance imaging in the detection of local prostate cancer recurrence after external beam radiotherapy and radical prostatectomy. Clin Oncol (R Coll Radio). 2013;25:252–64.

    Article  CAS  Google Scholar 

  81. Shim S, Kim SJ, Lee J. Diagnostic test accuracy: application and practice using R software. Epidemiol Health. 2019;41:e2019007.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Wellcome Trust Senior Clinical Research Fellowship. Grant code:204998/Z/16/Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Bass.

Ethics declarations

Conflict of interest

HUA’s research is supported by core funding from the United Kingdom’s National Institute of Health Research (NIHR) Imperial Biomedical Research Centre. HUA currently receives funding from the Wellcome Trust, Medical Research Council (UK), Cancer Research UK, Prostate Cancer UK, The Urology Foundation, BMA Foundation, Imperial Health Charity, NIHR Imperial BRC, Sonacare Inc., Trod Medical and Sophiris Biocorp for trials in prostate cancer. HUA was a paid medical consultant for Sophiris Biocorp in the previous 3 years.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bass, E.J., Pantovic, A., Connor, M. et al. A systematic review and meta-analysis of the diagnostic accuracy of biparametric prostate MRI for prostate cancer in men at risk. Prostate Cancer Prostatic Dis 24, 596–611 (2021). https://doi.org/10.1038/s41391-020-00298-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-020-00298-w

This article is cited by

Search

Quick links