Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

New insights and potential biomarkers for intraventricular hemorrhage in extremely premature infant, case-control study

Abstract

Background

Despite advancements in neonatal care, germinal matrix-intraventricular hemorrhage impacts 20% of very preterm infants, exacerbating their neurological prognosis. Understanding its complex, multifactorial pathophysiology and rapid onset remains challenging. This study aims to link specific cord blood biomolecules at birth with post-natal germinal matrix-intraventricular hemorrhage onset.

Methods

A monocentric, prospective case-control study was conducted at Rouen University Hospital from 2015 to 2020. Premature newborns ( < 30 gestational age) were included and cord blood was sampled in the delivery room. A retrospective matching procedure was held in 2021 to select samples for proteomic and metabolomic analysis of 370 biomolecules.

Results

26 patients with germinal matrix-intraventricular hemorrhage cases and 60 controls were included. Clinical differences were minimal, except for higher invasive ventilation rates in the germinal matrix-intraventricular hemorrhage group. Germinal matrix-intraventricular hemorrhage newborns exhibited lower phosphatidylcholine levels and elevated levels of four proteins: BOC cell adhesion-associated protein, placental growth factor, Leukocyte-associated immunoglobulin-like receptor 2, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2.

Conclusion

This study identifies biomolecules that may be linked to subsequent germinal matrix-intraventricular hemorrhage, suggesting heightened vascular disruption risk as an independent factor. These results need further validation but could serve as early germinal matrix-intraventricular hemorrhage risk biomarkers for future evaluations.

Impact

  • Decrease in certain phosphatidylcholines and increase in four proteins in cord blood at birth may be linked to subsequent germinal matrix-intraventricular hemorrhage in premature newborns.

  • The four proteins are BOC cell adhesion-associated protein, placental growth factor, leukocyte-associated immunoglobulin-like receptor 2, and TNF-related apoptosis-inducing ligand receptor 2.

  • This biological imprint could point toward higher vascular disruption risk as an independent risk factor for this complication and with further validations, could be used for better stratification of premature newborns at birth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Distribution of the biomolecules that are differently expressed between the two groups.
Fig. 3: Biomolecules correlated with the severity of the GM-IVH (Papile classification), R is the Spearman correlation coefficient.

Similar content being viewed by others

Data availability

Data is available and can be found in the supplementary tables.

References

  1. Patel, R. Short- and long-term outcomes for extremely preterm infants. Am. J. Perinatol. 33, 318–328 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hollebrandse, N. L. et al. School-age outcomes following intraventricular haemorrhage in infants born extremely preterm. Arch. Dis. Child Fetal Neonatal Ed. 106, 4–8 (2021).

    Article  PubMed  Google Scholar 

  3. Egesa, W. I. et al. Germinal matrix-intraventricular hemorrhage: a tale of preterm infants. Int. J. Pediatr. 2021, 1–14 (2021).

    Article  Google Scholar 

  4. Raybaud, C., Ahmad, T., Rastegar, N., Shroff, M. & Al Nassar, M. The premature brain: developmental and lesional anatomy. Neuroradiology 55, 23–40 (2013).

    Article  PubMed  Google Scholar 

  5. Vogel, J. P. et al. Updated who recommendations on antenatal corticosteroids and tocolytic therapy for improving preterm birth outcomes. Lancet Glob. Health 10, e1707–e1708 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doyle, L. W., Crowther, C. A., Middleton, P. & Marret, S. Antenatal magnesium sulfate and neurologic outcome in preterm infants: a systematic review. Obstet. Gynecol. 113, 1327–1333 (2009).

    Article  PubMed  Google Scholar 

  7. Crowther, C. A. et al. Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: an individual participant data meta-analysis. PLOS Med. 14, e1002398 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ancel, P.-Y. et al. Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011. JAMA Pediatr. 169, 230 (2015).

    Article  PubMed  Google Scholar 

  9. Mccormick, M. C., Litt, J. S., Smith, V. C. & Zupancic, J. A. F. Prematurity: an overview and public health implications. Annu. Rev. Public Health 32, 367–379 (2011).

    Article  PubMed  Google Scholar 

  10. Committee on Understanding Premature Birth and Assuring Healthy Outcomes. Preterm Birth: Causes, Consequences, and Prevention (National Academies Press, 2007).

  11. Ballabh, P. Pathogenesis and prevention of intraventricular hemorrhage. Clin. Perinatol. 41, 47–67 (2014).

    Article  PubMed  Google Scholar 

  12. Limperopoulos, C. et al. Cerebral hemodynamic changes during intensive care of preterm Infants. Pediatrics 122, e1006–e1013 (2008).

    Article  PubMed  Google Scholar 

  13. Ballabh, P., Braun, A. & Nedergaard, M. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr. Res 56, 117–124 (2004).

    Article  PubMed  Google Scholar 

  14. Ballabh, P. et al. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat. Med 13, 477–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 Gm. J. Pediatr. 92, 529–534 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Gilard, V. et al. Post Hemorrhagic hydrocephalus and neurodevelopmental outcomes in a context of neonatal intraventricular hemorrhage: an institutional experience in 122 preterm children. BMC Pediatr. 18, 288 (2018).

  17. McCrea, H. J. & Ment, L. R. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin. Perinatol. 35, 777–792 (2008). vii.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Leijser, L. M. & de Vries, L. S. Preterm brain injury: germinal matrix-intraventricular hemorrhage and post-hemorrhagic ventricular dilatation. Handb. Clin. Neurol. 162, 173–199 (2019).

    Article  PubMed  Google Scholar 

  19. Gilard, V., Tebani, A., Bekri, S. & Marret, S. Intraventricular hemorrhage in very preterm infants: a comprehensive review. J. Clin. Med. 9, 2447 (2020).

  20. de Graaf, M. A., Jager, K. J., Zoccali, C. & Dekker, F. W. Matching, an appealing method to avoid confounding? Nephron Clin. Pr. 118, c315–318 (2011).

    Article  Google Scholar 

  21. R Core Team. R.: A language and environment for statistical computing. R Foundation for Statistical Computing (R Core Team, 2020).

  22. Makowski, D. L. {Performance}: an {R} package for assessment, comparison and testing of Statistical Models. J. Open Source Softw. 6, 3139 (2021).

    Article  ADS  Google Scholar 

  23. Hastie, T., Tibshirani, R., Narasimhan, B. & Chu, G. Impute: Imputation for Microarray Data. https://git.bioconductor.org/packages/impute (2022).

  24. Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. Pcamethods-a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Wright, M. N. & Ziegler, A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).

  26. Nembrini, S., König, I. R. & Wright, M. N. The revival of the gini importance? Bioinformatics 34, 3711–3718 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Janitza, S., Celik, E. & Boulesteix, A.-L. A computationally fast variable importance test for random forests for high-dimensional. Adv. Data Anal. Classification 12, 885–915 (2018).

    Article  MathSciNet  Google Scholar 

  28. Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research https://CRAN.R-project.org/package=psych (2023).

  29. Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).

  30. WHO. Who Recommendations on Antenatal Corticosteroids for Improving Preterm Birth Outcomes. (WHO, 2022).

  31. Jayaram, P. M., Mohan, M. K., Farid, I. & Lindow, S. Antenatal magnesium sulfate for fetal neuroprotection: a critical appraisal and systematic review of clinical practice guidelines. J. Perinat. Med. 47, 262–269 (2019).

    Article  PubMed  Google Scholar 

  32. Helwich, E., Rutkowska, M., Bokiniec, R., Gulczynska, E. & Hozejowski, R. Intraventricular hemorrhage in premature infants with respiratory distress syndrome treated with surfactant: incidence and risk factors in the Prospective Cohort Study. Dev. Period Med 21, 328–335 (2017).

    PubMed  Google Scholar 

  33. Mian, Q. et al. Impact of delivered tidal volume on the occurrence of intraventricular haemorrhage in preterm infants during positive pressure ventilation in the delivery room. Arch. Dis. Child Fetal Neonatal Ed. 104, F57–F62 (2019).

    Article  PubMed  Google Scholar 

  34. Aly, H., Hammad, T. A., Essers, J. & Wung, J. T. Is mechanical ventilation associated with intraventricular hemorrhage in preterm infants? Brain Dev. 34, 201–205 (2012).

    Article  PubMed  Google Scholar 

  35. Furse, S. & De Kroon, A. I. P. M. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol. Membr. Biol. 32, 117–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Cui, Z. & Houweling, M. Phosphatidylcholine and cell death. Biochim. Biophys. Acta 1585, 87–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wright, M. M., Howe, A. G. & Zaremberg, V. Cell membranes and apoptosis: role of cardiolipin, phosphatidylcholine, and anticancer lipid analogues. Biochem. Cell Biol. 82, 18–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Morita, S. Y. & Ikeda, Y. Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochem. Pharm. 206, 115296 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Cole, L. K., Vance, J. E. & Vance, D. E. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim. Biophys. Acta 1821, 754–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Neale Ridgway, Roger McLeod. Biochemistry of Lipids, Lipoproteins and Membranes. 6th edn. (Elsevier, Amsterdam, 2016).

  41. Herrera, E. & Desoye, G. Maternal and fetal lipid metabolism under normal and gestational diabetic conditions. Horm. Mol. Biol. Clin. Investig. 26, 109–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Chao De La Barca, J. M. et al. A metabolomic profiling of intra-uterine growth restriction in placenta and cord blood points to an impairment of lipid and energetic metabolism. Biomedicines 10, 1411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao, Y., Linden, P., Shima, D., Browne, F. & Folkman, J. In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J. Clin. Investig. 98, 2507–2511 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. d’Audigier, C. et al. Targeting Vegfr1 on endothelial progenitors modulates their differentiation potential. Angiogenesis 17, 603–616 (2014).

    Article  PubMed  Google Scholar 

  45. Uemura, A. et al. Vegfr1 signaling in retinal angiogenesis and microinflammation. Prog. Retin. Eye Res. 84, 100954 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Apte, R. S., Chen, D. S. & Ferrara, N. Vegf in signaling and disease: beyond discovery and development. Cell 176, 1248–1264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Freitas-Andrade, M., Carmeliet, P., Charlebois, C., Stanimirovic, D. B. & Moreno, M. J. Plgf knockout delays brain vessel growth and maturation upon systemic hypoxic challenge. J. Cereb. Blood Flow. Metab. 32, 663–675 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Yano, K. et al. Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality. J. Exp. Med. 203, 1447–1458 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, D. et al. Overexpression of vascular endothelial growth factor in the germinal matrix induces neurovascular proteases and intraventricular hemorrhage. Sci. Transl. Med 5, 193ra190 (2013).

    Article  Google Scholar 

  50. Lecuyer, M. et al. Plgf, a placental marker of fetal brain defects after in utero alcohol exposure. Acta Neuropathol. Commun. 5, 44 (2017).

  51. Okada, A. et al. Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444, 369–373 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Sanchez-Arrones, L., Cardozo, M., Nieto-Lopez, F. & Bovolenta, P. Cdon and Boc: two transmembrane proteins implicated in cell-cell communication. Int J. Biochem Cell Biol. 44, 698–702 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Siegenthaler, J. A., Sohet, F. & Daneman, R. ‘Sealing Off the Cns’: cellular and molecular regulation of blood–brain barriergenesis. Curr. Opin. Neurobiol. 23, 1057–1064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chapouly, C., Guimbal, S., Hollier, P.-L. & Renault, M.-A. Role of hedgehog signaling in vasculature development, differentiation, and maintenance. Int. J. Mol. Sci. 20, 3076 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng, B. et al. Shh activation restores interneurons and cognitive function in newborns with intraventricular haemorrhage. Brain 146, 629–644 (2023).

    Article  PubMed  Google Scholar 

  56. Lebbink, R. J. et al. The soluble leukocyte-associated Ig-like receptor (Lair)-2 antagonizes the collagen/lair-1 inhibitory immune interaction. J. Immunol. 180, 1662–1669 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Lenting, P. J., Westerlaken, G. H. A., Denis, C. V., Akkerman, J. W. & Meyaard, L. Efficient inhibition of collagen-induced platelet activation and adhesion by Lair-2, a soluble Ig-like receptor family member. PLoS ONE 5, e12174 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Olde Nordkamp, M. J. M. et al. Inhibition of the classical and lectin pathway of the complement system by recombinant lair-2. J. Innate Immun. 6, 284–292 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Lemke, J., Von Karstedt, S., Zinngrebe, J. & Walczak, H. Getting trail back on track for cancer therapy. Cell Death Differ. 21, 1350–1364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilson, S. et al. Proapoptotic activation of death receptor 5 on tumor endothelial cells disrupts the vasculature and reduces tumor growth. Cancer Cell 22, 80–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Léger, C. et al. Glutamate controls vessel-associated migration of GABA interneurons from the pial migratory route via NMDA receptors and endothelial protease activation. Cell. Mol. Life Sci. 77, 1959–1986 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nathalie Mestre for data capture and monitoring. We thank the medical team and the midwives for their implication to this study. We thank the parents for consenting to have their child participate in this study. The promoter of the study is the Delegation for Clinical Research and Innovation of the Rouen University Hospital. This research received the favorable opinion of the ethical comity “Comité de Protection des Personnes”—CPP and the authorization of the “Agence Nationale de Sécurité du Medicament”—ANSM on 11/07/2014. This research is registered on the clinicaltrials.gov website with the identifier NCT02400853. The collection of biological samples carried out within the framework of this research was declared to the ANSM at the same time as the request for authorization of the research and will be declared at the end of the study to the Minister in charge of research and the Director of the Regional Health Agency.

Funding

This study received intramural financial support from the Rouen University Hospital.

Author information

Authors and Affiliations

Authors

Contributions

S.M., S.B., A.T. conceptualized and designed the research, and collected and analyzed data. S.M., A.T., S.B., and F.D. drafted the initial manuscript. F.D., C.P., T.P., S.S., L.A.D., C.L.C. acquired the data. F.D., A.T. performed the statistical analysis. All authors reviewed, revised, and approved the final manuscript.

Corresponding author

Correspondence to Stéphane Marret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Written parental consent was needed and obtained as soon as possible after birth following a clear explanation of the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducatez, F., Tebani, A., Abily-Donval, L. et al. New insights and potential biomarkers for intraventricular hemorrhage in extremely premature infant, case-control study. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03111-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03111-9

This article is cited by

Search

Quick links