Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Sample entropy correlates with intraventricular hemorrhage and mortality in premature infants early in life

Abstract

Background

Mortality and intraventricular hemorrhage (IVH) are common adverse outcomes in preterm infants and are challenging to predict clinically. Sample entropy (SE), a measure of heart rate variability (HRV), has shown predictive power for sepsis and other morbidities in neonates. We evaluated associations between SE and mortality and IVH in the first week of life.

Methods

Participants were 389 infants born before 32 weeks of gestation for whom bedside monitor data were available. A total of 29 infants had IVH grade 3 or 4 and 31 infants died within 2 weeks of life. SE was calculated with the PhysioNet open-source benchmark. Logistic regressions assessed associations between SE and IVH and/or mortality with and without common clinical covariates over various hour of life (HOL) censor points.

Results

Lower SE was associated with mortality by 4 HOL, but higher SE was very strongly associated with IVH and mortality at 24–96 HOL. Bootstrap testing confirmed SE significantly improved prediction using clinical variables at 96 HOL.

Conclusion

SE is a significant predictor of IVH and mortality in premature infants. Given IVH typically occurs in the first 24–72 HOL, affected infants may initially have low SE followed by a sustained period of high SE.

Impact

  • SE correlates with IVH and mortality in preterm infants early in life.

  • SE combined with clinical factors yielded ROC AUCs well above 0.8 and significantly outperformed the clinical model at 96 h of life. Previous studies had not shown predictive power over clinical models.

  • First study using the PhysioNet Cardiovascular Toolbox benchmark in young infants.

  • Relative to the generally accepted timing of IVH in premature infants, we saw lower SE before or around the time of hemorrhage and a sustained period of higher SE after. Higher SE after acute events has not been reported previously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mean SE by hour of life grouped according to clinical outcomes.
Fig. 2: Distribution of SE by hour of life grouped according to clinical outcomes depicting only the cases and gestational age-matched controls.
Fig. 3: Additive impact of SE on logistic models at different HOL censor points measured by ROC AUC mean and 95% confidence intervals estimated from bootstrap analysis, 500 iterations on random 80% samples of the training data.

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Martin, J. A., Hamilton, B. E., Osterman, M. J. K., Driscoll, A. K. & Mathews, T. J. Births: Final Data for 2015. Natl. Vital-. Stat. Rep. Cent. Dis. Control Prev. Natl. Cent. Health Stat. Natl. Vital-. Stat. Syst. 66, 1 (2017).

    Google Scholar 

  2. Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet Lond. Engl. 379, 2162–2172 (2012).

    Article  Google Scholar 

  3. Patel, R. M. Short- and long-term outcomes for extremely preterm infants. Am. J. Perinatol. 33, 318–328 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walsh, M. C. et al. Neonatal outcomes of moderately preterm infants compared to extremely preterm infants. Pediatr. Res. 82, 297–304 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ward, R. M. & Beachy, J. C. Neonatal complications following preterm birth. BJOG Int. J. Obstet. Gynaecol. 110, 8–16 (2003).

    Article  Google Scholar 

  6. Stoll, B. J. et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012. JAMA 314, 1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Inder T. E., Perlman J. M., Volpe J. J. Preterm Intraventricular Hemorrhage/Posthemorrhagic Hydrocephalus [Internet]. In Volpe’s Neurology of the Newborn 637–698.e21 (Elsevier, 2018 [cited 2023 May]) Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323428767000247

  8. Inder, T. E., Warfield, S. K., Wang, H., Hüppi, P. S. & Volpe, J. J. Abnormal cerebral structure is present at term in premature infants. Pediatrics 115, 286–294 (2005).

    Article  PubMed  Google Scholar 

  9. Lazzara, A., Ahmann, P., Dykes, F., Brann, A. W. & Schwartz, J. Clinical Predictability of Intraventricular Hemorrhage in Preterm Infants. Pediatrics 65, 30–34 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Blackburn S. Assessment and management of neurologic dysfunction. In Comprehensive Neonatal Nursing. A Physiologic Perspective (Kenner C., Lott J., & Flandermeyer A., eds) 564-607 (WB Saunders Company, Philadelphia, PA, 1998)

  11. van Ravenswaaij-Arts, C. M., Kollée, L. A., Hopman, J. C., Stoelinga, G. B. & van Geijn, H. P. Heart rate variability. Ann. Intern. Med. 118, 436–447 (1993).

    Article  PubMed  Google Scholar 

  12. Griffin, M. P., Lake, D. E., O’Shea, T. M. & Moorman, J. R. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr. Res. 61, 222–227 (2007).

    Article  PubMed  Google Scholar 

  13. Griffin, M. P. et al. Abnormal heart rate characteristics are associated with neonatal mortality. Pediatr. Res. 55, 782–788 (2004).

    Article  PubMed  Google Scholar 

  14. Chien, L.-Y. et al. Snap-II predicts severe intraventricular hemorrhage and chronic lung disease in the neonatal intensive care unit. J. Perinatol. J. Calif. Perinat. Assoc. 22, 26–30 (2002).

    Google Scholar 

  15. Singh, R. et al. A predictive model for SIVH risk in preterm infants and targeted indomethacin therapy for prevention. Sci. Rep. 3, 2539 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Luque, M. J. et al. A risk prediction model for severe intraventricular hemorrhage in very low birth weight infants and the effect of prophylactic indomethacin. J. Perinatol. 34, 43–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Siddappa, A. M., Quiggle, G. M., Lock, E. & Rao, R. B. Predictors of severe intraventricular hemorrhage in preterm infants under 29-weeks gestation. J. Matern. Fetal Neonatal. Med. 34, 195–200 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Perlman, J. M., McMenamin, J. B. & Volpe, J. J. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome: relation to the development of intraventricular hemorrhage. N. Engl. J. Med. 309, 204–209 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Bel, F., Bor, M., Stijnen, T., Baan, J. & Ruys, J. H. Aetiological role of cerebral blood-flow alterations in development and extension of peri-intraventricular haemorrhage. Dev. Med. Child Neurol. 29, 601–614 (2008).

    Google Scholar 

  20. Noori, S., McCoy, M., Anderson, M. P., Ramji, F. & Seri, I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J. Pediatr. 164, 264–270.e3 (2014).

    Article  PubMed  Google Scholar 

  21. Hanna, B. D. et al. Heart rate variability in preterm brain-injured and very-low-birth-weight infants. Biol. Neonate 77, 147–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Tuzcu, V., Nas, S., Ulusar, U., Ugur, A. & Kaiser, J. R. Altered heart rhythm dynamics in very low birth weight infants with impending intraventricular hemorrhage. Pediatrics 123, 810–815 (2009).

    Article  PubMed  Google Scholar 

  23. Addison, K., Griffin, M. P., Moorman, J. R., Lake, D. E. & O’Shea, T. M. Heart rate characteristics and neurodevelopmental outcome in very low birth weight infants. J. Perinatol. 29, 750–756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fairchild, K. D. et al. Abnormal heart rate characteristics are associated with abnormal neuroimaging and outcomes in extremely low birth weight infants. J. Perinatol. 34, 375–379 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Sullivan, B. A. et al. Early heart rate characteristics predict death and morbidities in preterm infants. J. Pediatr. 174, 57–62 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Al-Abdi, S. Y. & Al-Aamri, M. A. A systematic review and meta-analysis of the timing of early intraventricular hemorrhage in preterm neonates: clinical and research implications. J. Clin. Neonatol. 3, 76–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Richman, J. S. & Moorman, J. R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Moorman, J. R. et al. Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol. Meas. 32, 1821–1832 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takatani, T. et al. Relationship between frequency spectrum of heart rate variability and autonomic nervous activities during sleep in newborns. Brain Dev. 40, 165–171 (2018).

    Article  PubMed  Google Scholar 

  30. Delgado-Bonal, A. & Marshak, A. Approximate entropy and sample entropy: a comprehensive tutorial. Entropy Basel Switz. 21, 541 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  31. Vest, A. N. et al. An open source benchmarked toolbox for cardiovascular waveform and interval analysis. Physiol. Meas. 39, 105004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J. Pediatr. 92, 529–534 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Bohlin, K., Gudmundsdottir, T., Katz-Salamon, M., Jonsson, B. & Blennow, M. Implementation of surfactant treatment during continuous positive airway pressure. J. Perinatol. J. Calif. Perinat. Assoc. 27, 422–427 (2007).

    CAS  Google Scholar 

  34. Miller, D. R., Dhillon, G. S., Bambos, N., Shin, A. Y. & Scheinker, D. WAVES - The Lucile Packard Children’s Hospital pediatric physiological waveforms dataset. Sci. Data 10, 124 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lake, D. E., Richman, J. S., Griffin, M. P. & Moorman, J. R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R789–R797 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. (Springer, New York, NY, 2009)

  37. James G., Witten D., Hastie T., Tibshirani R. An Introduction to Statistical Learning: with Applications in R. (Springer, New York, NY, 2021)

  38. Stålhammar, A. M. et al. Weight a minute: The smaller and more immature, the more predictable the autonomic regulation? Acta Paediatr. Oslo Nor. 112, 1443–1452 (2023).

    Article  Google Scholar 

  39. Ribeiro, M. et al. Evolution of heart rate complexity indices in the early detection of neonatal sepsis. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf. 2022, 367–372 (2022).

    Google Scholar 

  40. Jost, K., Datta, A. N., Frey, U. P., Suki, B. & Schulzke, S. M. Heart rate fluctuation after birth predicts subsequent cardiorespiratory stability in preterm infants. Pediatr. Res. 86, 348–354 (2019).

    Article  PubMed  Google Scholar 

  41. Beuchée, A. et al. Uncorrelated randomness of the heart rate is associated with sepsis in sick premature infants. Neonatology 96, 109–114 (2009).

    Article  PubMed  Google Scholar 

  42. Lake, D. E., Fairchild, K. D. & Moorman, J. R. Complex signals bioinformatics: evaluation of heart rate characteristics monitoring as a novel risk marker for neonatal sepsis. J. Clin. Monit. Comput. 28, 329–339 (2014).

    Article  PubMed  Google Scholar 

  43. Kovatchev, B. P. et al. Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. Pediatr. Res. 54, 892–898 (2003).

    Article  PubMed  Google Scholar 

  44. Rudolph, A. J., Vallbona, C. & Desmond, M. M. Cardiodynamic Studies in the Newborn: III. Heart Rate Patterns in Infants with Idiopathic Respiratory Distress Syndrome. Pediatrics 36, 551–559 (1965).

    Article  CAS  PubMed  Google Scholar 

  45. Alonzo, C. J. & Fairchild, K. D. Dexamethasone effect on heart rate variability in preterm infants on mechanical ventilation. J. Neonatal. Perinat. Med. 10, 425–430 (2017).

    Article  Google Scholar 

  46. Doyle, L. W., Ehrenkranz, R. A. & Halliday, H. L. Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst. Rev. 5, 1146 (2014).

    Google Scholar 

  47. Renolleau, C. et al. Association between Baseline Cortisol Serum Concentrations and the Effect of Prophylactic Hydrocortisone in Extremely Preterm Infants. J. Pediatr. 234, 65–70 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Griffin, M. P. & Moorman, J. R. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics 107, 97–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Babyak M. A. What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models. Psychosom. Med. [Internet] 66, 411-421 (2004). Available from: https://journals.lww.com/psychosomaticmedicine/Fulltext/2004/05000/What_You_See_May_Not_Be_What_You_Get__A_Brief,.21.aspx.

  50. Hawkins, D. M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 44, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17, 354–381 (1996).

  52. Valderrama, C. E., Marzbanrad, F., Hall-Clifford, R., Rohloff, P. & Clifford, G. D. A Proxy for Detecting IUGR Based on Gestational Age Estimation in a Guatemalan Rural Population. Front. Artif. Intell. 3, 56 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Magawa, S. et al. Fetal heart rate variability is a biomarker of rapid but not progressive exacerbation of inflammation in preterm fetal sheep. Sci. Rep. 12, 1771 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Henriques, T. et al. Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review. Entropy Basel Switz. 22, 309 (2020).

    Article  ADS  Google Scholar 

  55. Ribeiro, M. et al. The Entropy Universe. Entropy Basel Switz. 23, 222 (2021).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This research used data or services provided by STARR, “STAnford medicine Research data Repository,” a clinical data warehouse containing live Epic data from Stanford Health Care, the Stanford Children’s Hospital, the University Healthcare Alliance and Packard Children’s Health Alliance clinics and other auxiliary data from Hospital applications such as radiology PACS. STARR platform is developed and operated by the Stanford Medicine Research Technology team and is made possible by the Stanford School of Medicine Research Office. This work was supported by a grant from the Stanford Maternal & Child Health Research Institute (MCHRI, https://med.stanford.edu/mchri.html) with Melissa Scala as the principal investigator. Additional support included a faculty scholar award from MCHRI and resources generated from NIH/NICHD (R00 HD084749-01A1) to Katherine Travis (PI).

Author information

Authors and Affiliations

Authors

Contributions

M.D.S., V.C., K.T. and M.S. were responsible for the study design. M.D.S. and M.S. were responsible for the literature search and manuscript drafting. All authors were responsible for the critical revision of the manuscript, contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Michael D. Scahill.

Ethics declarations

Competing interests

E.H. is a full-time employee of Philips Healthcare and owns stock in the company. M.D.S., V.C., K.T., M.L., and M.S. declare no competing interests.

Ethical approval

The Stanford University Institutional Review Board approved this study (protocol number 50602). All data were gathered in the course of routine clinical care and anonymized, and so no specific consent was indicated.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scahill, M.D., Chock, V., Travis, K. et al. Sample entropy correlates with intraventricular hemorrhage and mortality in premature infants early in life. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03075-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03075-w

This article is cited by

Search

Quick links